IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59503-w.html
   My bibliography  Save this article

KAT5 regulates neurodevelopmental states associated with G0-like populations in glioblastoma

Author

Listed:
  • Anca B. Mihalas

    (Fred Hutchinson Cancer Center)

  • Sonali Arora

    (Fred Hutchinson Cancer Center)

  • Samantha A. O’Connor

    (Arizona State University)

  • Heather M. Feldman

    (Fred Hutchinson Cancer Center)

  • Christine E. Cucinotta

    (Ohio State University
    Fred Hutchinson Cancer Center)

  • Kelly Mitchell

    (Fred Hutchinson Cancer Center)

  • John Bassett

    (Karolinska Institute)

  • Dayoung Kim

    (Fred Hutchinson Cancer Center)

  • Kang Jin

    (Cincinnati Children’s Hospital Medical Center)

  • Pia Hoellerbauer

    (Fred Hutchinson Cancer Center)

  • Jennifer Delegard

    (University of Washington)

  • Melissa Ling

    (University of Washington)

  • Wesley Jenkins

    (University of Washington)

  • Megan Kufeld

    (Fred Hutchinson Cancer Center)

  • Philip Corrin

    (Fred Hutchinson Cancer Center)

  • Lucas Carter

    (Fred Hutchinson Cancer Center)

  • Toshio Tsukiyama

    (Fred Hutchinson Cancer Center)

  • Bruce Aronow

    (Cincinnati Children’s Hospital Medical Center)

  • Christopher L. Plaisier

    (Arizona State University)

  • Anoop P. Patel

    (Duke University
    Duke University
    Duke University)

  • Patrick J. Paddison

    (Fred Hutchinson Cancer Center
    University of Washington)

Abstract

Quiescence cancer stem-like cells may play key roles in promoting tumor cell heterogeneity and recurrence for many tumors, including glioblastoma (GBM). Here we show that the protein acetyltransferase KAT5 is a key regulator of transcriptional, epigenetic, and proliferative heterogeneity impacting transitions into G0-like states in GBM. KAT5 activity suppresses the emergence of quiescent subpopulations with neurodevelopmental progenitor characteristics, while promoting GBM stem-like cell (GSC) self-renewal through coordinately regulating E2F- and MYC- transcriptional networks with protein translation. KAT5 inactivation significantly decreases tumor progression and invasive behavior while increasing survival after standard of care. Further, increasing MYC expression in human neural stem cells stimulates KAT5 activity and protein translation, as well as confers sensitivity to homoharringtonine, to similar levels to those found in GSCs and high-grade gliomas. These results suggest that the dynamic behavior of KAT5 plays key roles in G0 ingress/egress, adoption of quasi-neurodevelopmental states, and aggressive tumor growth in gliomas.

Suggested Citation

  • Anca B. Mihalas & Sonali Arora & Samantha A. O’Connor & Heather M. Feldman & Christine E. Cucinotta & Kelly Mitchell & John Bassett & Dayoung Kim & Kang Jin & Pia Hoellerbauer & Jennifer Delegard & Me, 2025. "KAT5 regulates neurodevelopmental states associated with G0-like populations in glioblastoma," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59503-w
    DOI: 10.1038/s41467-025-59503-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59503-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59503-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Raphaël Margueron & Danny Reinberg, 2011. "The Polycomb complex PRC2 and its mark in life," Nature, Nature, vol. 469(7330), pages 343-349, January.
    2. Daniela Annibali & Jonathan R. Whitfield & Emilia Favuzzi & Toni Jauset & Erika Serrano & Isabel Cuartas & Sara Redondo-Campos & Gerard Folch & Alba Gonzàlez-Juncà & Nicole M. Sodir & Daniel Massó-Val, 2014. "Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis," Nature Communications, Nature, vol. 5(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengrui Feng & Sajid A. Marhon & Dustin J. Sokolowski & Alister D’Costa & Fraser Soares & Parinaz Mehdipour & Charles Ishak & Helen Loo Yau & Ilias Ettayebi & Parasvi S. Patel & Raymond Chen & Jiming, 2024. "Inhibiting EZH2 targets atypical teratoid rhabdoid tumor by triggering viral mimicry via both RNA and DNA sensing pathways," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Xinyi Chen & Yiran Guo & Ting Zhao & Jiuwei Lu & Jian Fang & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2024. "Structural basis for the H2AK119ub1-specific DNMT3A-nucleosome interaction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Allegra Angeloni & Skye Fissette & Deniz Kaya & Jillian M. Hammond & Hasindu Gamaarachchi & Ira W. Deveson & Robert J. Klose & Weiming Li & Xiaotian Zhang & Ozren Bogdanovic, 2024. "Extensive DNA methylome rearrangement during early lamprey embryogenesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Varadha Balaji Venkadakrishnan & Adam G. Presser & Richa Singh & Matthew A. Booker & Nicole A. Traphagen & Kenny Weng & Nathaniel C. E. Voss & Navin R. Mahadevan & Kei Mizuno & Loredana Puca & Osasena, 2024. "Lineage-specific canonical and non-canonical activity of EZH2 in advanced prostate cancer subtypes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Pedro L. Baldoni & Naim U. Rashid & Joseph G. Ibrahim, 2022. "Efficient detection and classification of epigenomic changes under multiple conditions," Biometrics, The International Biometric Society, vol. 78(3), pages 1141-1154, September.
    6. Zhaowei Yu & Qi Wang & Qichen Zhang & Yawen Tian & Guo Yan & Jidong Zhu & Guangya Zhu & Yong Zhang, 2024. "Decoding the genomic landscape of chromatin-associated biomolecular condensates," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Rachel K. Lex & Weiqiang Zhou & Zhicheng Ji & Kristin N. Falkenstein & Kaleigh E. Schuler & Kathryn E. Windsor & Joseph D. Kim & Hongkai Ji & Steven A. Vokes, 2022. "GLI transcriptional repression is inert prior to Hedgehog pathway activation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Lihu Gong & Xiuli Liu & Lianying Jiao & Xin Yang & Andrew Lemoff & Xin Liu, 2022. "CK2-mediated phosphorylation of SUZ12 promotes PRC2 function by stabilizing enzyme active site," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Wen Hao Neo & Yiran Meng & Alba Rodriguez-Meira & Muhammad Z. H. Fadlullah & Christopher A. G. Booth & Emanuele Azzoni & Supat Thongjuea & Marella F. T. R. Bruijn & Sten Eirik W. Jacobsen & Adam J. Me, 2021. "Ezh2 is essential for the generation of functional yolk sac derived erythro-myeloid progenitors," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    10. Xiaozhen Zhao & Yiming Wang & Bingqin Yuan & Hanxi Zhao & Yujie Wang & Zheng Tan & Zhiyuan Wang & Huijun Wu & Gang Li & Wei Song & Ravi Gupta & Kenichi Tsuda & Zhonghua Ma & Xuewen Gao & Qin Gu, 2024. "Temporally-coordinated bivalent histone modifications of BCG1 enable fungal invasion and immune evasion," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Nadia Khan & Barry Schoenike & Trina Basu & Heidi Grabenstatter & Genesis Rodriguez & Caleb Sindic & Margaret Johnson & Eli Wallace & Rama Maganti & Raymond Dingledine & Avtar Roopra, 2019. "A systems approach identifies Enhancer of Zeste Homolog 2 (EZH2) as a protective factor in epilepsy," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-26, December.
    12. Nikhil B. Ghate & Sungmin Kim & Yonghwan Shin & Jinman Kim & Michael Doche & Scott Valena & Alan Situ & Sangnam Kim & Suhn K. Rhie & Heinz-Josef Lenz & Tobias S. Ulmer & Shannon M. Mumenthaler & Wooji, 2023. "Phosphorylation and stabilization of EZH2 by DCAF1/VprBP trigger aberrant gene silencing in colon cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Noe E. Crespo & Alexandra Torres-Bracero & Jessicca Y. Renta & Robert J. Desnick & Carmen L. Cadilla, 2021. "Expression Profiling Identifies TWIST2 Target Genes in Setleis Syndrome Patient Fibroblast and Lymphoblast Cells," IJERPH, MDPI, vol. 18(4), pages 1-27, February.
    14. Xiaoyun Xin & Peirong Li & Xiuyun Zhao & Yangjun Yu & Weihong Wang & Guihua Jin & Jiao Wang & Liling Sun & Deshuang Zhang & Fenglan Zhang & Shuancang Yu & Tongbing Su, 2024. "Temperature-dependent jumonji demethylase modulates flowering time by targeting H3K36me2/3 in Brassica rapa," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59503-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.