IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0222665.html
   My bibliography  Save this article

Machine learning discovery of longitudinal patterns of depression and suicidal ideation

Author

Listed:
  • Jue Gong
  • Gregory E Simon
  • Shan Liu

Abstract

Background and aim: Depression is often accompanied by thoughts of self-harm, which are a strong predictor of subsequent suicide attempt and suicide death. Few empirical data are available regarding the temporal correlation between depression symptoms and suicidal ideation. We investigated the anecdotal concern that suicidal ideation may increase during a period of depression improvement. Data: Longitudinal Patient Health Questionnaire (PHQ)-9 is a questionnaire of 9 multiple-choice questions to assess the frequency of depressive symptoms within the previous two weeks. We analyzed a chronic depression treatment population’s electronic health record (EHR) data, containing 610 patients’ longitudinal PHQ-9 scores (62% age 45 and older; 68% female) within 40 weeks. Methods: The irregular and sparse EHR data were transformed into continuous trajectories using Gaussian process regression. We first estimated the correlations between the symptoms (total score of the first 8 questions; PHQ-8) and suicide ideation (9th question score; Item 9) using the cross-correlation function. We then used an artificial neural network (ANN) to discover subtypes of depression patterns from the fitted depression trajectories. In addition, we conducted a separate analysis using the unfitted raw PHQ scores to examine PHQ-8’s and Item 9’s pattern changes. Results: Results showed that the majority of patients’ PHQ-8 and Item 9 scores displayed strong temporal correlations. We found five patterns in the PHQ-8 and the Item 9 trajectories. We also found 8% - 13% of the patients have experienced an increase in suicidal ideation during the improvement of their PHQ-8. Using a trajectory-based method for subtype pattern detection in depression progression, we provided a better understanding of temporal correlations between depression symptoms over time.

Suggested Citation

  • Jue Gong & Gregory E Simon & Shan Liu, 2019. "Machine learning discovery of longitudinal patterns of depression and suicidal ideation," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-15, September.
  • Handle: RePEc:plo:pone00:0222665
    DOI: 10.1371/journal.pone.0222665
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0222665
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0222665&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0222665?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ying Lin & Shan Liu & Shuai Huang, 2018. "Selective sensing of a heterogeneous population of units with dynamic health conditions," IISE Transactions, Taylor & Francis Journals, vol. 50(12), pages 1076-1088, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Jue & Liu, Shan, 2023. "Partially observable collaborative model for optimizing personalized treatment selection," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1409-1419.
    2. Hossein Kamalzadeh & Vishal Ahuja & Michael Hahsler & Michael E. Bowen, 2021. "An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3161-3191, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0222665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.