IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0176314.html
   My bibliography  Save this article

Modular Protein Expression Toolbox (MoPET), a standardized assembly system for defined expression constructs and expression optimization libraries

Author

Listed:
  • Ernst Weber
  • Jörg Birkenfeld
  • Jürgen Franz
  • Uwe Gritzan
  • Lars Linden
  • Mark Trautwein

Abstract

The design and generation of an optimal expression construct is the first and essential step in in the characterization of a protein of interest. Besides evaluation and optimization of process parameters (e.g. selection of the best expression host or cell line and optimal induction conditions and time points), the design of the expression construct itself has a major impact. However, the path to this final expression construct is often not straight forward and includes multiple learning cycles accompanied by design variations and retesting of construct variants, since multiple, functional DNA sequences of the expression vector backbone, either coding or non-coding, can have a major impact on expression yields. To streamline the generation of defined expression constructs of otherwise difficult to express proteins, the Modular Protein Expression Toolbox (MoPET) has been developed. This cloning platform allows highly efficient DNA assembly of pre-defined, standardized functional DNA modules with a minimal cloning burden. Combining these features with a standardized cloning strategy facilitates the identification of optimized DNA expression constructs in shorter time. The MoPET system currently consists of 53 defined DNA modules divided into eight functional classes and can be flexibly expanded. However, already with the initial set of modules, 792,000 different constructs can be rationally designed and assembled. Furthermore, this starting set was used to generate small and mid-sized combinatorial expression optimization libraries. Applying this screening approach, variants with up to 60-fold expression improvement have been identified by MoPET variant library screening.

Suggested Citation

  • Ernst Weber & Jörg Birkenfeld & Jürgen Franz & Uwe Gritzan & Lars Linden & Mark Trautwein, 2017. "Modular Protein Expression Toolbox (MoPET), a standardized assembly system for defined expression constructs and expression optimization libraries," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
  • Handle: RePEc:plo:pone00:0176314
    DOI: 10.1371/journal.pone.0176314
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176314
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0176314&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0176314?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Drew Endy, 2005. "Foundations for engineering biology," Nature, Nature, vol. 438(7067), pages 449-453, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih-Yuan Hsu & Bor-Sen Chen, 2016. "Systematic Design of a Metal Ion Biosensor: A Multi-Objective Optimization Approach," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    2. VAN DEN OORD, Ad & VAN WITTELOOSTUIJN, Arjen & DUYSTERS, Geert & GILSING, Victor, 2010. "The ecology of technology: An empirical study of US biotechnology patents from 1976 to 2003," ACED Working Papers 2010008, University of Antwerp, Faculty of Business and Economics.
    3. Naira R. Matevosyan, 2018. "Techno-borne Organs: Medical, Legal, and Policy Concerns," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(2), pages 544-560, June.
    4. Mario A Marchisio & Jörg Stelling, 2011. "Automatic Design of Digital Synthetic Gene Circuits," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-13, February.
    5. T. Kuiken & G. Dana & K. Oye & D. Rejeski, 2014. "Shaping ecological risk research for synthetic biology," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(3), pages 191-199, September.
    6. Torgersen, Helge & Bogner, Alexander & Kastenhofer, Karen, 2013. "The Power of Framing in Technology Governance: The Case of Biotechnologies (ITA-manu:script 13-01)," ITA manu:scripts 13_01, Institute of Technology Assessment (ITA).
    7. Nylund, Petra A. & Ferràs-Hernández, Xavier & Pareras, Luis & Brem, Alexander, 2022. "The emergence of entrepreneurial ecosystems based on enabling technologies: Evidence from synthetic biology," Journal of Business Research, Elsevier, vol. 149(C), pages 728-735.
    8. Ovidiu Lipan & Jean-Marc Navenot & Zixuan Wang & Lei Huang & Stephen C Peiper, 2007. "Heat Shock Response in CHO Mammalian Cells Is Controlled by a Nonlinear Stochastic Process," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-12, October.
    9. Lorenzo Pasotti & Nicolò Politi & Susanna Zucca & Maria Gabriella Cusella De Angelis & Paolo Magni, 2012. "Bottom-Up Engineering of Biological Systems through Standard Bricks: A Modularity Study on Basic Parts and Devices," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    10. Featherston, Charles R. & Ho, Jae-Yun & Brévignon-Dodin, Laure & O'Sullivan, Eoin, 2016. "Mediating and catalysing innovation: A framework for anticipating the standardisation needs of emerging technologies," Technovation, Elsevier, vol. 48, pages 25-40.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0176314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.