IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0164658.html
   My bibliography  Save this article

Long-Range Memory in Literary Texts: On the Universal Clustering of the Rare Words

Author

Listed:
  • Kumiko Tanaka-Ishii
  • Armin Bunde

Abstract

A fundamental problem in linguistics is how literary texts can be quantified mathematically. It is well known that the frequency of a (rare) word in a text is roughly inverse proportional to its rank (Zipf’s law). Here we address the complementary question, if also the rhythm of the text, characterized by the arrangement of the rare words in the text, can be quantified mathematically in a similar basic way. To this end, we consider representative classic single-authored texts from England/Ireland, France, Germany, China, and Japan. In each text, we classify each word by its rank. We focus on the rare words with ranks above some threshold Q and study the lengths of the (return) intervals between them. We find that for all texts considered, the probability SQ(r) that the length of an interval exceeds r, follows a perfect Weibull-function, SQ(r) = exp(−b(β)rβ), with β around 0.7. The return intervals themselves are arranged in a long-range correlated self-similar fashion, where the autocorrelation function CQ(s) of the intervals follows a power law, CQ(s) ∼ s−γ, with an exponent γ between 0.14 and 0.48. We show that these features lead to a pronounced clustering of the rare words in the text.

Suggested Citation

  • Kumiko Tanaka-Ishii & Armin Bunde, 2016. "Long-Range Memory in Literary Texts: On the Universal Clustering of the Rare Words," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-14, November.
  • Handle: RePEc:plo:pone00:0164658
    DOI: 10.1371/journal.pone.0164658
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164658
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0164658&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0164658?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Santhanam, M.S. & Kantz, Holger, 2005. "Long-range correlations and rare events in boundary layer wind fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(3), pages 713-721.
    2. Armin Bunde & Ulf Büntgen & Josef Ludescher & Jürg Luterbacher & Hans von Storch, 2013. "Is there memory in precipitation?," Nature Climate Change, Nature, vol. 3(3), pages 174-175, March.
    3. Eduardo G Altmann & Janet B Pierrehumbert & Adilson E Motter, 2009. "Beyond Word Frequency: Bursts, Lulls, and Scaling in the Temporal Distributions of Words," PLOS ONE, Public Library of Science, vol. 4(11), pages 1-7, November.
    4. Ebeling, Werner & Neiman, Alexander, 1995. "Long-range correlations between letters and sentences in texts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 215(3), pages 233-241.
    5. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    6. Kantelhardt, Jan W & Koscielny-Bunde, Eva & Rego, Henio H.A & Havlin, Shlomo & Bunde, Armin, 2001. "Detecting long-range correlations with detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 441-454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yang & Zhuo, Xuru & Zhou, Xiaozhu, 2024. "Multifractal analysis of Chinese literary and web novels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    2. Shuntaro Takahashi & Kumiko Tanaka-Ishii, 2017. "Do neural nets learn statistical laws behind natural language?," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuntaro Takahashi & Kumiko Tanaka-Ishii, 2017. "Do neural nets learn statistical laws behind natural language?," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-17, December.
    2. Vieira, Denner S. & Picoli, Sergio & Mendes, Renio S., 2018. "Robustness of sentence length measures in written texts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 749-754.
    3. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    5. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    6. Laura Raisa Miloş & Cornel Haţiegan & Marius Cristian Miloş & Flavia Mirela Barna & Claudiu Boțoc, 2020. "Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    7. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of trends on detrended fluctuation analysis of long-range correlated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 182-198.
    8. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    9. Jiang, Lei & Zhang, Jiping & Liu, Xinwei & Li, Fei, 2016. "Multi-fractal scaling comparison of the Air Temperature and the Surface Temperature over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 783-792.
    10. Zeng, Yayun & Wang, Jun & Xu, Kaixuan, 2017. "Complexity and multifractal behaviors of multiscale-continuum percolation financial system for Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 364-376.
    11. Michalski, Sebastian, 2008. "Blocks adjustment—reduction of bias and variance of detrended fluctuation analysis using Monte Carlo simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 217-242.
    12. Jamshid Ardalankia & Mohammad Osoolian & Emmanuel Haven & G. Reza Jafari, 2019. "Scaling Features of Price-Volume Cross-Correlation," Papers 1903.01744, arXiv.org, revised Aug 2020.
    13. Longfeng Zhao & Wei Li & Chunbin Yang & Jihui Han & Zhu Su & Yijiang Zou, 2017. "Multifractality and Network Analysis of Phase Transition," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-23, January.
    14. Heng Chen & Haitao Liu, 2018. "Quantifying Evolution of Short and Long-Range Correlations in Chinese Narrative Texts across 2000 Years," Complexity, Hindawi, vol. 2018, pages 1-12, February.
    15. Kalamaras, N. & Philippopoulos, K. & Deligiorgi, D. & Tzanis, C.G. & Karvounis, G., 2017. "Multifractal scaling properties of daily air temperature time series," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 38-43.
    16. He, Hong-di & Wang, Jun-li & Wei, Hai-rui & Ye, Cheng & Ding, Yi, 2016. "Fractal behavior of traffic volume on urban expressway through adaptive fractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 518-525.
    17. Rodriguez-Romo, Suemi & Sosa-Herrera, Antonio, 2013. "Lacunarity and multifractal analysis of the large DLA mass distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3316-3328.
    18. Suárez-García, Pablo & Gómez-Ullate, David, 2014. "Multifractality and long memory of a financial index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 226-234.
    19. Kiyono, Ken & Tsujimoto, Yutaka, 2016. "Nonlinear filtering properties of detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 807-815.
    20. Bhardwaj, Shivam & Chandrasekhar, E. & Seemala, Gopi K. & Gadre, Vikram M., 2020. "Characterization of ionospheric total electron content data using wavelet-based multifractal formalism," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0164658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.