IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0163098.html
   My bibliography  Save this article

Taxonomic Identity Resolution of Highly Phylogenetically Related Strains and Selection of Phylogenetic Markers by Using Genome-Scale Methods: The Bacillus pumilus Group Case

Author

Listed:
  • Martín Espariz
  • Federico A Zuljan
  • Luis Esteban
  • Christian Magni

Abstract

Bacillus pumilus group strains have been studied due their agronomic, biotechnological or pharmaceutical potential. Classifying strains of this taxonomic group at species level is a challenging procedure since it is composed of seven species that share among them over 99.5% of 16S rRNA gene identity. In this study, first, a whole-genome in silico approach was used to accurately demarcate B. pumilus group strains, as a case of highly phylogenetically related taxa, at the species level. In order to achieve that and consequently to validate or correct taxonomic identities of genomes in public databases, an average nucleotide identity correlation, a core-based phylogenomic and a gene function repertory analyses were performed. Eventually, more than 50% such genomes were found to be misclassified. Hierarchical clustering of gene functional repertoires was also used to infer ecotypes among B. pumilus group species. Furthermore, for the first time the machine-learning algorithm Random Forest was used to rank genes in order of their importance for species classification. We found that ybbP, a gene involved in the synthesis of cyclic di-AMP, was the most important gene for accurately predicting species identity among B. pumilus group strains. Finally, principal component analysis was used to classify strains based on the distances between their ybbP genes. The methodologies described could be utilized more broadly to identify other highly phylogenetically related species in metagenomic or epidemiological assessments.

Suggested Citation

  • Martín Espariz & Federico A Zuljan & Luis Esteban & Christian Magni, 2016. "Taxonomic Identity Resolution of Highly Phylogenetically Related Strains and Selection of Phylogenetic Markers by Using Genome-Scale Methods: The Bacillus pumilus Group Case," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-17, September.
  • Handle: RePEc:plo:pone00:0163098
    DOI: 10.1371/journal.pone.0163098
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163098
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0163098&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0163098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Antonis Rokas & Barry L. Williams & Nicole King & Sean B. Carroll, 2003. "Genome-scale approaches to resolving incongruence in molecular phylogenies," Nature, Nature, vol. 425(6960), pages 798-804, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang Yuancheng & Degnan James H, 2011. "Performance of Matrix Representation with Parsimony for Inferring Species from Gene Trees," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-39, May.
    2. Rahul Siddharthan & Eric D Siggia & Erik van Nimwegen, 2005. "PhyloGibbs: A Gibbs Sampling Motif Finder That Incorporates Phylogeny," PLOS Computational Biology, Public Library of Science, vol. 1(7), pages 1-23, December.
    3. Roch, Sebastien & Steel, Mike, 2015. "Likelihood-based tree reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent," Theoretical Population Biology, Elsevier, vol. 100(C), pages 56-62.
    4. David Peris & Emily J. Ubbelohde & Meihua Christina Kuang & Jacek Kominek & Quinn K. Langdon & Marie Adams & Justin A. Koshalek & Amanda Beth Hulfachor & Dana A. Opulente & David J. Hall & Katie Hyma , 2023. "Macroevolutionary diversity of traits and genomes in the model yeast genus Saccharomyces," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Haque Md Rejuan & Kubatko Laura, 2024. "A global test of hybrid ancestry from genome-scale data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 23(1), pages 1-18, January.
    6. Alexei J Drummond & Simon Y W Ho & Matthew J Phillips & Andrew Rambaut, 2006. "Relaxed Phylogenetics and Dating with Confidence," PLOS Biology, Public Library of Science, vol. 4(5), pages 1-1, March.
    7. Sergio Consoli & Jan Korst & Steffen Pauws & Gijs Geleijnse, 2020. "Improved metaheuristics for the quartet method of hierarchical clustering," Journal of Global Optimization, Springer, vol. 78(2), pages 241-270, October.
    8. Siewert Elizabeth A & Kechris Katerina J, 2009. "Prediction of Motifs Based on a Repeated-Measures Model for Integrating Cross-Species Sequence and Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-34, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0163098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.