IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0158855.html
   My bibliography  Save this article

A Data-Based Approach to Discovering Multi-Topic Influential Leaders

Author

Listed:
  • Xing Tang
  • Qiguang Miao
  • Shangshang Yu
  • Yining Quan

Abstract

Recently, increasing numbers of users have adopted microblogging services as their main information source. However, most of them find themselves drowning in the millions of posts produced by other users every day. To cope with this, identifying a set of the most influential people is paramount. Moreover, finding a set of related influential users to expand the coverage of one particular topic is required in real world scenarios. Most of the existing algorithms in this area focus on topology-related methods such as PageRank. These methods mine link structures to find the expected influential rank of users. However, because they ignore the interaction data, these methods turn out to be less effective in social networks. In reality, a variety of topics exist within the information diffusing through the network. Because they have different interests, users play different roles in the diffusion of information related to different topics. As a result, distinguishing influential leaders according to different topics is also worthy of research. In this paper, we propose a multi-topic influence diffusion model (MTID) based on traces acquired from historic information. We decompose the influential scores of users into two parts: the direct influence determined by information propagation along the link structure and indirect influence that extends beyond the restrictions of direct follower relationships. To model the network from a multi-topical viewpoint, we introduce topic pools, each of which represents a particular topic information source. Then, we extract the topic distributions from the traces of tweets, determining the influence propagation probability and content generation probability. In the network, we adopt multiple ground nodes representing topic pools to connect every user through bidirectional links. Based on this multi-topical view of the network, we further introduce the topic-dependent rank (TD-Rank) algorithm to identify the multi-topic influential users. Our algorithm not only effectively overcomes the shortages of PageRank but also effectively produces a measure of topic-related rank. Extensive experiments on a Weibo dataset show that our model is both effective and robust.

Suggested Citation

  • Xing Tang & Qiguang Miao & Shangshang Yu & Yining Quan, 2016. "A Data-Based Approach to Discovering Multi-Topic Influential Leaders," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-14, July.
  • Handle: RePEc:plo:pone00:0158855
    DOI: 10.1371/journal.pone.0158855
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158855
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0158855&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0158855?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Linyuan Lü & Yi-Cheng Zhang & Chi Ho Yeung & Tao Zhou, 2011. "Leaders in Social Networks, the Delicious Case," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-9, June.
    2. Li, Qian & Zhou, Tao & Lü, Linyuan & Chen, Duanbing, 2014. "Identifying influential spreaders by weighted LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 47-55.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Ming-Yang & Xiong, Wen-Man & Wu, Xiang-Yang & Zhang, Yu-Xia & Liao, Hao, 2018. "Overlapping influence inspires the selection of multiple spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 76-83.
    2. Yingzhi Zhang & Shubin Liang & Jialin Liu & Peilong Cao & Lan Luan, 2021. "Evaluation for machine tool components importance based on improved LeaderRank," Journal of Risk and Reliability, , vol. 235(3), pages 331-337, June.
    3. Chaocheng He & Jiang Wu & Qingpeng Zhang, 2021. "Characterizing research leadership on geographically weighted collaboration network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4005-4037, May.
    4. Su, Qingyu & Chen, Cong & Huang, Xin & Li, Jian, 2022. "Interval TrendRank method for grid node importance assessment considering new energy," Applied Energy, Elsevier, vol. 324(C).
    5. Huang, Chuangxia & Wen, Shigang & Li, Mengge & Wen, Fenghua & Yang, Xin, 2021. "An empirical evaluation of the influential nodes for stock market network: Chinese A-shares case," Finance Research Letters, Elsevier, vol. 38(C).
    6. Xiaojie Wang & Xue Zhang & Chengli Zhao & Dongyun Yi, 2016. "Maximizing the Spread of Influence via Generalized Degree Discount," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-16, October.
    7. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.
    8. Zhao, Jie & Wang, Yunchuan & Deng, Yong, 2020. "Identifying influential nodes in complex networks from global perspective," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    9. Zhu, Canshi & Wang, Xiaoyang & Zhu, Lin, 2017. "A novel method of evaluating key nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 43-50.
    10. Huang, Chuangxia & Deng, Yunke & Yang, Xiaoguang & Cao, Jinde & Yang, Xin, 2021. "A network perspective of comovement and structural change: Evidence from the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 76(C).
    11. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    12. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Shokrollahi, Arman, 2015. "Improving detection of influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 833-845.
    13. Zhao, Shuying & Sun, Shaowei, 2023. "Identification of node centrality based on Laplacian energy of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    14. Chen, Yahong & Li, Jinlin & Huang, He & Ran, Lun & Hu, Yusheng, 2017. "Encouraging information sharing to boost the name-your-own-price auction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 108-117.
    15. Wang, Jingjing & Xu, Shuqi & Mariani, Manuel S. & Lü, Linyuan, 2021. "The local structure of citation networks uncovers expert-selected milestone papers," Journal of Informetrics, Elsevier, vol. 15(4).
    16. Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    17. Hongping Wang & Yajuan Zhang & Zili Zhang & Sankaran Mahadevan & Yong Deng, 2015. "PhysarumSpreader: A New Bio-Inspired Methodology for Identifying Influential Spreaders in Complex Networks," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-21, December.
    18. Zhang, Jun-li & Fu, Yan-jun & Cheng, Lan & Yang, Yun-yun, 2021. "Identifying multiple influential spreaders based on maximum connected component decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    19. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    20. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0158855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.