IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0146732.html
   My bibliography  Save this article

CERENA: ChEmical REaction Network Analyzer—A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics

Author

Listed:
  • Atefeh Kazeroonian
  • Fabian Fröhlich
  • Andreas Raue
  • Fabian J Theis
  • Jan Hasenauer

Abstract

Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from http://cerenadevelopers.github.io/CERENA/.

Suggested Citation

  • Atefeh Kazeroonian & Fabian Fröhlich & Andreas Raue & Fabian J Theis & Jan Hasenauer, 2016. "CERENA: ChEmical REaction Network Analyzer—A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-15, January.
  • Handle: RePEc:plo:pone00:0146732
    DOI: 10.1371/journal.pone.0146732
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146732
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0146732&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0146732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rajesh Ramaswamy & Nélido González-Segredo & Ivo F. Sbalzarini & Ramon Grima, 2012. "Discreteness-induced concentration inversion in mesoscopic chemical systems," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    2. Avigdor Eldar & Michael B. Elowitz, 2010. "Functional roles for noise in genetic circuits," Nature, Nature, vol. 467(7312), pages 167-173, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:plo:pone00:0213302 is not listed on IDEAS
    2. Fabian Fröhlich & Philipp Thomas & Atefeh Kazeroonian & Fabian J Theis & Ramon Grima & Jan Hasenauer, 2016. "Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Hasenauer & Christine Hasenauer & Tim Hucho & Fabian J Theis, 2014. "ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-17, July.
    2. Lee, Julian, 2023. "Poisson distributions in stochastic dynamics of gene expression: What events do they count?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    3. Lucy Ham & Megan A. Coomer & Kaan Öcal & Ramon Grima & Michael P. H. Stumpf, 2024. "A stochastic vs deterministic perspective on the timing of cellular events," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Laura Corrales-Guerrero & Asaf Tal & Rinat Arbel-Goren & Vicente Mariscal & Enrique Flores & Antonia Herrero & Joel Stavans, 2015. "Spatial Fluctuations in Expression of the Heterocyst Differentiation Regulatory Gene hetR in Anabaena Filaments," PLOS Genetics, Public Library of Science, vol. 11(4), pages 1-21, April.
    5. Singh, Abhyudai & Vahdat, Zahra & Xu, Zikai, 2019. "Time-triggered stochastic hybrid systems with two timer-dependent resets," OSF Preprints u8fzg, Center for Open Science.
    6. Gyurin Kim & Doeun Kim & JuHyeong Lee & Juhwan Kim & Se-Yeon Heo & Young Min Song & Hyeon-Ho Jeong, 2025. "Quasi-ordered plasmonic metasurfaces with unclonable stochastic scattering for secure authentication," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    7. Koji Iwamoto & Satomi Matsuoka & Masahiro Ueda, 2025. "Excitable Ras dynamics-based screens reveal RasGEFX is required for macropinocytosis and random cell migration," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    8. Margaritis Voliotis & Philipp Thomas & Ramon Grima & Clive G Bowsher, 2016. "Stochastic Simulation of Biomolecular Networks in Dynamic Environments," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-18, June.
    9. Chen, Aimin & Tian, Tianhai & Chen, Yiren & Zhou, Tianshou, 2022. "Stochastic analysis of a complex gene-expression model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    10. Abhyudai Singh & Mohammad Soltani, 2013. "Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    11. Angélique Richard & Loïs Boullu & Ulysse Herbach & Arnaud Bonnafoux & Valérie Morin & Elodie Vallin & Anissa Guillemin & Nan Papili Gao & Rudiyanto Gunawan & Jérémie Cosette & Ophélie Arnaud & Jean-Ja, 2016. "Single-Cell-Based Analysis Highlights a Surge in Cell-to-Cell Molecular Variability Preceding Irreversible Commitment in a Differentiation Process," PLOS Biology, Public Library of Science, vol. 14(12), pages 1-35, December.
    12. Christine Andres & Jan Hasenauer & Frank Allgower & Tim Hucho, 2012. "Threshold-Free Population Analysis Identifies Larger DRG Neurons to Respond Stronger to NGF Stimulation," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-14, March.
    13. repec:plo:pcbi00:1006368 is not listed on IDEAS
    14. Kajántó, Sándor & Néda, Zoltán, 2018. "Universality in the coarse-grained fluctuations for a class of linear dynamical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 215-220.
    15. Hao Ge & Pingping Wu & Hong Qian & Xiaoliang Sunney Xie, 2018. "Relatively slow stochastic gene-state switching in the presence of positive feedback significantly broadens the region of bimodality through stabilizing the uninduced phenotypic state," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-24, March.
    16. Leighton T Izu & Tamás Bányász & Ye Chen-Izu, 2015. "Optimizing Population Variability to Maximize Benefit," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-17, December.
    17. Fabian Fröhlich & Philipp Thomas & Atefeh Kazeroonian & Fabian J Theis & Ramon Grima & Jan Hasenauer, 2016. "Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-28, July.
    18. Shuangyu Bi & Manika Kargeti & Remy Colin & Niklas Farke & Hannes Link & Victor Sourjik, 2023. "Dynamic fluctuations in a bacterial metabolic network," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Xiaoling Zhai & Joseph W Larkin & Kaito Kikuchi & Samuel E Redford & Ushasi Roy & Gürol M Süel & Andrew Mugler, 2019. "Statistics of correlated percolation in a bacterial community," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-19, December.
    20. Song, Yi & Xu, Wei, 2021. "Asymmetric Lévy noise changed stability in a gene transcriptional regulatory system," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    21. Máté, Gabriell & Néda, Zoltán, 2016. "The advantage of inhomogeneity — Lessons from a noise driven linearized dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 310-317.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0146732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.