IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0142047.html
   My bibliography  Save this article

Effect of Imaging Parameter Thresholds on MRI Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer Subtypes

Author

Listed:
  • Wei-Ching Lo
  • Wen Li
  • Ella F Jones
  • David C Newitt
  • John Kornak
  • Lisa J Wilmes
  • Laura J Esserman
  • Nola M Hylton

Abstract

The purpose of this study is to evaluate the predictive performance of magnetic resonance imaging (MRI) markers in breast cancer patients by subtype. Sixty-four patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy were enrolled in this study. Each patient received a dynamic contrast-enhanced (DCE-MRI) at baseline, after 1 cycle of chemotherapy and before surgery. Functional tumor volume (FTV), the imaging marker measured by DCE-MRI, was computed at various thresholds of percent enhancement (PEt) and signal-enhancement ratio (SERt). Final FTV before surgery and percent changes of FTVs at the early and final treatment time points were used to predict patients’ recurrence-free survival. The full cohort and each subtype defined by the status of hormone receptor and human epidermal growth factor receptor 2 (HR+/HER2-, HER2+, triple negative) were analyzed. Predictions were evaluated using the Cox proportional hazard model when PEt changed from 30% to 200% in steps of 10% and SERt changed from 0 to 2 in steps of 0.2. Predictions with high hazard ratios and low p-values were considered as strong. Different profiles of FTV as predictors for recurrence-free survival were observed in each breast cancer subtype and strong associations with survival were observed at different PEt/SERt combinations that resulted in different FTVs. Findings from this retrospective study suggest that the predictive performance of imaging markers based on FTV may be improved with enhancement thresholds being optimized separately for clinically-relevant subtypes defined by HR and HER2 receptor expression.

Suggested Citation

  • Wei-Ching Lo & Wen Li & Ella F Jones & David C Newitt & John Kornak & Lisa J Wilmes & Laura J Esserman & Nola M Hylton, 2016. "Effect of Imaging Parameter Thresholds on MRI Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer Subtypes," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-12, February.
  • Handle: RePEc:plo:pone00:0142047
    DOI: 10.1371/journal.pone.0142047
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142047
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0142047&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0142047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles M. Perou & Therese Sørlie & Michael B. Eisen & Matt van de Rijn & Stefanie S. Jeffrey & Christian A. Rees & Jonathan R. Pollack & Douglas T. Ross & Hilde Johnsen & Lars A. Akslen & Øystein Flu, 2000. "Molecular portraits of human breast tumours," Nature, Nature, vol. 406(6797), pages 747-752, August.
    2. Ella F Jones & Sumedha P Sinha & David C Newitt & Catherine Klifa & John Kornak & Catherine C Park & Nola M Hylton, 2013. "MRI Enhancement in Stromal Tissue Surrounding Breast Tumors: Association with Recurrence Free Survival following Neoadjuvant Chemotherapy," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xi & Hoadley, Katherine A. & Hannig, Jan & Marron, J.S., 2023. "Jackstraw inference for AJIVE data integration," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    2. Manish G & Anil Kumar Badana & Rama Rao Malla, 2017. "Emerging Diagnostic and Prognostic Biomarkers of Triple Negative Breast Cancer," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(3), pages 561-565, August.
    3. Jacob Elnaggar & Fern Tsien & Lucio Miele & Chindo Hicks & Clayton Yates & Melisa Davis, 2019. "An Integrative Genomics Approach for Associating Genetic Susceptibility with the Tumor Immune Microenvironment in Triple Negative Breast Cancer," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 15(1), pages 1-12, February.
    4. Egashira, Kento & Yata, Kazuyoshi & Aoshima, Makoto, 2024. "Asymptotic properties of hierarchical clustering in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    5. María Elena Martínez & Jonathan T Unkart & Li Tao & Candyce H Kroenke & Richard Schwab & Ian Komenaka & Scarlett Lin Gomez, 2017. "Prognostic significance of marital status in breast cancer survival: A population-based study," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
    6. Yishai Shimoni, 2018. "Association between expression of random gene sets and survival is evident in multiple cancer types and may be explained by sub-classification," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-15, February.
    7. Anna Dvorkin-Gheva & John A Hassell, 2014. "Identification of a Novel Luminal Molecular Subtype of Breast Cancer," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    8. Marcin Pilarczyk & Mehdi Fazel-Najafabadi & Michal Kouril & Behrouz Shamsaei & Juozas Vasiliauskas & Wen Niu & Naim Mahi & Lixia Zhang & Nicholas A. Clark & Yan Ren & Shana White & Rashid Karim & Huan, 2022. "Connecting omics signatures and revealing biological mechanisms with iLINCS," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Apostolos Zaravinos & George I Lambrou & Ioannis Boulalas & Dimitris Delakas & Demetrios A Spandidos, 2011. "Identification of Common Differentially Expressed Genes in Urinary Bladder Cancer," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-28, April.
    10. Junhee Seok & Ronald W Davis & Wenzhong Xiao, 2015. "A Hybrid Approach of Gene Sets and Single Genes for the Prediction of Survival Risks with Gene Expression Data," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
    11. Qing Qu & Yan Mao & Xiao-chun Fei & Kun-wei Shen, 2013. "The Impact of Androgen Receptor Expression on Breast Cancer Survival: A Retrospective Study and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    12. Stéphanie Cornen & Arnaud Guille & José Adélaïde & Lynda Addou-Klouche & Pascal Finetti & Marie-Rose Saade & Marwa Manai & Nadine Carbuccia & Ismahane Bekhouche & Anne Letessier & Stéphane Raynaud & E, 2014. "Candidate Luminal B Breast Cancer Genes Identified by Genome, Gene Expression and DNA Methylation Profiling," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-16, January.
    13. Bourret, Pascale & Keating, Peter & Cambrosio, Alberto, 2011. "Regulating diagnosis in post-genomic medicine: Re-aligning clinical judgment?," Social Science & Medicine, Elsevier, vol. 73(6), pages 816-824, September.
    14. G. Gambardella & G. Viscido & B. Tumaini & A. Isacchi & R. Bosotti & D. di Bernardo, 2022. "A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Yuru Bai & Lu Qiao & Ning Xie & Yongquan Shi & Na Liu & Jinhai Wang, 2017. "Expression and prognosis analyses of the Tob/BTG antiproliferative (APRO) protein family in human cancers," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-12, September.
    16. Yoo-Ah Kim & Stefan Wuchty & Teresa M Przytycka, 2011. "Identifying Causal Genes and Dysregulated Pathways in Complex Diseases," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
    17. Pauliina M. Munne & Lahja Martikainen & Iiris Räty & Kia Bertula & Nonappa & Janika Ruuska & Hanna Ala-Hongisto & Aino Peura & Babette Hollmann & Lilya Euro & Kerim Yavuz & Linda Patrikainen & Maria S, 2021. "Compressive stress-mediated p38 activation required for ERα + phenotype in breast cancer," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    18. Radhakrishnan Nagarajan & Marco Scutari, 2013. "Impact of Noise on Molecular Network Inference," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    19. R Joseph Bender & Feilim Mac Gabhann, 2013. "Expression of VEGF and Semaphorin Genes Define Subgroups of Triple Negative Breast Cancer," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-15, May.
    20. Marron, J.S., 2017. "Big Data in context and robustness against heterogeneity," Econometrics and Statistics, Elsevier, vol. 2(C), pages 73-80.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0142047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.