IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0136392.html
   My bibliography  Save this article

Quantifying and Mapping the Supply of and Demand for Carbon Storage and Sequestration Service from Urban Trees

Author

Listed:
  • Chang Zhao
  • Heather A Sander

Abstract

Studies that assess the distribution of benefits provided by ecosystem services across urban areas are increasingly common. Nevertheless, current knowledge of both the supply and demand sides of ecosystem services remains limited, leaving a gap in our understanding of balance between ecosystem service supply and demand that restricts our ability to assess and manage these services. The present study seeks to fill this gap by developing and applying an integrated approach to quantifying the supply and demand of a key ecosystem service, carbon storage and sequestration, at the local level. This approach follows three basic steps: (1) quantifying and mapping service supply based upon Light Detection and Ranging (LiDAR) processing and allometric models, (2) quantifying and mapping demand for carbon sequestration using an indicator based on local anthropogenic CO2 emissions, and (3) mapping a supply-to-demand ratio. We illustrate this approach using a portion of the Twin Cities Metropolitan Area of Minnesota, USA. Our results indicate that 1735.69 million kg carbon are stored by urban trees in our study area. Annually, 33.43 million kg carbon are sequestered by trees, whereas 3087.60 million kg carbon are emitted by human sources. Thus, carbon sequestration service provided by urban trees in the study location play a minor role in combating climate change, offsetting approximately 1% of local anthropogenic carbon emissions per year, although avoided emissions via storage in trees are substantial. Our supply-to-demand ratio map provides insight into the balance between carbon sequestration supply in urban trees and demand for such sequestration at the local level, pinpointing critical locations where higher levels of supply and demand exist. Such a ratio map could help planners and policy makers to assess and manage the supply of and demand for carbon sequestration.

Suggested Citation

  • Chang Zhao & Heather A Sander, 2015. "Quantifying and Mapping the Supply of and Demand for Carbon Storage and Sequestration Service from Urban Trees," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-31, August.
  • Handle: RePEc:plo:pone00:0136392
    DOI: 10.1371/journal.pone.0136392
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136392
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0136392&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0136392?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. de Groot, Rudolf S. & Wilson, Matthew A. & Boumans, Roelof M. J., 2002. "A typology for the classification, description and valuation of ecosystem functions, goods and services," Ecological Economics, Elsevier, vol. 41(3), pages 393-408, June.
    2. Maes, Joachim & Egoh, Benis & Willemen, Louise & Liquete, Camino & Vihervaara, Petteri & Schägner, Jan Philipp & Grizzetti, Bruna & Drakou, Evangelia G. & Notte, Alessandra La & Zulian, Grazia & Boura, 2012. "Mapping ecosystem services for policy support and decision making in the European Union," Ecosystem Services, Elsevier, vol. 1(1), pages 31-39.
    3. Hein, Lars & van Koppen, Kris & de Groot, Rudolf S. & van Ierland, Ekko C., 2006. "Spatial scales, stakeholders and the valuation of ecosystem services," Ecological Economics, Elsevier, vol. 57(2), pages 209-228, May.
    4. Palomo, Ignacio & Martín-López, Berta & Potschin, Marion & Haines-Young, Roy & Montes, Carlos, 2013. "National Parks, buffer zones and surrounding lands: Mapping ecosystem service flows," Ecosystem Services, Elsevier, vol. 4(C), pages 104-116.
    5. Bagstad, Kenneth J. & Johnson, Gary W. & Voigt, Brian & Villa, Ferdinando, 2013. "Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services," Ecosystem Services, Elsevier, vol. 4(C), pages 117-125.
    6. de Groot, Rudolf & Brander, Luke & van der Ploeg, Sander & Costanza, Robert & Bernard, Florence & Braat, Leon & Christie, Mike & Crossman, Neville & Ghermandi, Andrea & Hein, Lars & Hussain, Salman & , 2012. "Global estimates of the value of ecosystems and their services in monetary units," Ecosystem Services, Elsevier, vol. 1(1), pages 50-61.
    7. Boyd, James & Banzhaf, Spencer, 2007. "What are ecosystem services? The need for standardized environmental accounting units," Ecological Economics, Elsevier, vol. 63(2-3), pages 616-626, August.
    8. Fisher, Brendan & Turner, R. Kerry & Morling, Paul, 2009. "Defining and classifying ecosystem services for decision making," Ecological Economics, Elsevier, vol. 68(3), pages 643-653, January.
    9. Boumans, Roelof & Costanza, Robert & Farley, Joshua & Wilson, Matthew A. & Portela, Rosimeiry & Rotmans, Jan & Villa, Ferdinando & Grasso, Monica, 2002. "Modeling the dynamics of the integrated earth system and the value of global ecosystem services using the GUMBO model," Ecological Economics, Elsevier, vol. 41(3), pages 529-560, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Hejie & Liu, Huiming & Xu, Zihan & Ren, Jiahui & Lu, Nachuan & Fan, Weiguo & Zhang, Peng & Dong, Xiaobin, 2018. "Linking ecosystem services supply, social demand and human well-being in a typical mountain–oasis–desert area, Xinjiang, China," Ecosystem Services, Elsevier, vol. 31(PA), pages 44-57.
    2. Baró, Francesc & Gómez-Baggethun, Erik & Haase, Dagmar, 2017. "Ecosystem service bundles along the urban-rural gradient: Insights for landscape planning and management," Ecosystem Services, Elsevier, vol. 24(C), pages 147-159.
    3. Huan Tang & Xiao Liu & Ruijie Xie & Yuqin Lin & Jiawei Fang & Jing Yuan, 2024. "Response of Carbon Energy Storage to Land Use/Cover Changes in Shanxi Province, China," Energies, MDPI, vol. 17(13), pages 1-16, July.
    4. Wei, Hejie & Fan, Weiguo & Wang, Xuechao & Lu, Nachuan & Dong, Xiaobin & Zhao, Yanan & Ya, Xijia & Zhao, Yifei, 2017. "Integrating supply and social demand in ecosystem services assessment: A review," Ecosystem Services, Elsevier, vol. 25(C), pages 15-27.
    5. Arturo Sanchez-Porras & María Guadalupe Tenorio-Arvide & Ricardo Darío Peña-Moreno & María Laura Sampedro-Rosas & Sonia Emilia Silva-Gómez, 2018. "Evaluation of the Potential Change to the Ecosystem Service Provision Due to Industrialization," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    6. Hongjuan Zhang & Juan Feng & Zhicheng Zhang & Kang Liu & Xin Gao & Zidong Wang, 2020. "Regional Spatial Management Based on Supply–Demand Risk of Ecosystem Services—A Case Study of the Fenghe River Watershed," IJERPH, MDPI, vol. 17(11), pages 1-25, June.
    7. Cortinovis, Chiara & Geneletti, Davide, 2019. "A framework to explore the effects of urban planning decisions on regulating ecosystem services in cities," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kubiszewski, Ida & Concollato, Luke & Costanza, Robert & Stern, David I., 2023. "Changes in authorship, networks, and research topics in ecosystem services," Ecosystem Services, Elsevier, vol. 59(C).
    2. Häyhä, Tiina & Franzese, Pier Paolo & Paletto, Alessandro & Fath, Brian D., 2015. "Assessing, valuing, and mapping ecosystem services in Alpine forests," Ecosystem Services, Elsevier, vol. 14(C), pages 12-23.
    3. Maia de Souza, Danielle & Lopes, Gabriela Russo & Hansson, Julia & Hansen, Karin, 2018. "Ecosystem services in life cycle assessment: A synthesis of knowledge and recommendations for biofuels," Ecosystem Services, Elsevier, vol. 30(PB), pages 200-210.
    4. Turner, Katrine Grace & Anderson, Sharolyn & Gonzales-Chang, Mauricio & Costanza, Robert & Courville, Sasha & Dalgaard, Tommy & Dominati, Estelle & Kubiszewski, Ida & Ogilvy, Sue & Porfirio, Luciana &, 2016. "A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration," Ecological Modelling, Elsevier, vol. 319(C), pages 190-207.
    5. Häyhä, Tiina & Franzese, Pier Paolo, 2014. "Ecosystem services assessment: A review under an ecological-economic and systems perspective," Ecological Modelling, Elsevier, vol. 289(C), pages 124-132.
    6. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    7. Ochoa, Vivian & Urbina-Cardona, Nicolás, 2017. "Tools for spatially modeling ecosystem services: Publication trends, conceptual reflections and future challenges," Ecosystem Services, Elsevier, vol. 26(PA), pages 155-169.
    8. Ferdinando Villa & Kenneth J Bagstad & Brian Voigt & Gary W Johnson & Rosimeiry Portela & Miroslav Honzák & David Batker, 2014. "A Methodology for Adaptable and Robust Ecosystem Services Assessment," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-18, March.
    9. Schirpke, Uta & Scolozzi, Rocco & De Marco, Claudio & Tappeiner, Ulrike, 2014. "Mapping beneficiaries of ecosystem services flows from Natura 2000 sites," Ecosystem Services, Elsevier, vol. 9(C), pages 170-179.
    10. Crossman, Neville D. & Burkhard, Benjamin & Nedkov, Stoyan & Willemen, Louise & Petz, Katalin & Palomo, Ignacio & Drakou, Evangelia G. & Martín-Lopez, Berta & McPhearson, Timon & Boyanova, Kremena & A, 2013. "A blueprint for mapping and modelling ecosystem services," Ecosystem Services, Elsevier, vol. 4(C), pages 4-14.
    11. Wei, Hejie & Fan, Weiguo & Wang, Xuechao & Lu, Nachuan & Dong, Xiaobin & Zhao, Yanan & Ya, Xijia & Zhao, Yifei, 2017. "Integrating supply and social demand in ecosystem services assessment: A review," Ecosystem Services, Elsevier, vol. 25(C), pages 15-27.
    12. Pandeya, B. & Buytaert, W. & Zulkafli, Z. & Karpouzoglou, T. & Mao, F. & Hannah, D.M., 2016. "A comparative analysis of ecosystem services valuation approaches for application at the local scale and in data scarce regions," Ecosystem Services, Elsevier, vol. 22(PB), pages 250-259.
    13. Bo Yang & Ming-Han Li & Shujuan Li, 2013. "Design-with-Nature for Multifunctional Landscapes: Environmental Benefits and Social Barriers in Community Development," IJERPH, MDPI, vol. 10(11), pages 1-26, October.
    14. Braat, Leon C. & de Groot, Rudolf, 2012. "The ecosystem services agenda:bridging the worlds of natural science and economics, conservation and development, and public and private policy," Ecosystem Services, Elsevier, vol. 1(1), pages 4-15.
    15. Jiayi Zhou & Kangning Xiong & Qi Wang & Jiuhan Tang & Li Lin, 2022. "A Review of Ecological Assets and Ecological Products Supply: Implications for the Karst Rocky Desertification Control," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    16. Heink, Ulrich & Jax, Kurt, 2019. "Going Upstream — How the Purpose of a Conceptual Framework for Ecosystem Services Determines Its Structure," Ecological Economics, Elsevier, vol. 156(C), pages 264-271.
    17. Adrienne Grêt-Regamey & Bettina Weibel & Kenneth J Bagstad & Marika Ferrari & Davide Geneletti & Hermann Klug & Uta Schirpke & Ulrike Tappeiner, 2014. "On the Effects of Scale for Ecosystem Services Mapping," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-26, December.
    18. Stoll, Stefan & Frenzel, Mark & Burkhard, Benjamin & Adamescu, Mihai & Augustaitis, Algirdas & Baeßler, Cornelia & Bonet, Francisco J. & Carranza, Maria Laura & Cazacu, Constantin & Cosor, Georgia L. , 2015. "Assessment of ecosystem integrity and service gradients across Europe using the LTER Europe network," Ecological Modelling, Elsevier, vol. 295(C), pages 75-87.
    19. Zilio, Mariana I. & Alfonso, M. Belén & Ferrelli, Federico & Perillo, Gerardo M.E. & Piccolo, M. Cintia, 2017. "Ecosystem services provision, tourism and climate variability in shallow lakes: The case of La Salada, Buenos Aires, Argentina," Tourism Management, Elsevier, vol. 62(C), pages 208-217.
    20. Chalkiadakis, Charis & Drakou, Evangelia G. & Kraak, Menno-Jan, 2022. "Ecosystem service flows: A systematic literature review of marine systems," Ecosystem Services, Elsevier, vol. 54(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0136392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.