IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0120031.html
   My bibliography  Save this article

Variable Importance and Prediction Methods for Longitudinal Problems with Missing Variables

Author

Listed:
  • Iván Díaz
  • Alan Hubbard
  • Anna Decker
  • Mitchell Cohen

Abstract

We present prediction and variable importance (VIM) methods for longitudinal data sets containing continuous and binary exposures subject to missingness. We demonstrate the use of these methods for prognosis of medical outcomes of severe trauma patients, a field in which current medical practice involves rules of thumb and scoring methods that only use a few variables and ignore the dynamic and high-dimensional nature of trauma recovery. Well-principled prediction and VIM methods can provide a tool to make care decisions informed by the high-dimensional patient’s physiological and clinical history. Our VIM parameters are analogous to slope coefficients in adjusted regressions, but are not dependent on a specific statistical model, nor require a certain functional form of the prediction regression to be estimated. In addition, they can be causally interpreted under causal and statistical assumptions as the expected outcome under time-specific clinical interventions, related to changes in the mean of the outcome if each individual experiences a specified change in the variable (keeping other variables in the model fixed). Better yet, the targeted MLE used is doubly robust and locally efficient. Because the proposed VIM does not constrain the prediction model fit, we use a very flexible ensemble learner (the SuperLearner), which returns a linear combination of a list of user-given algorithms. Not only is such a prediction algorithm intuitive appealing, it has theoretical justification as being asymptotically equivalent to the oracle selector. The results of the analysis show effects whose size and significance would have been not been found using a parametric approach (such as stepwise regression or LASSO). In addition, the procedure is even more compelling as the predictor on which it is based showed significant improvements in cross-validated fit, for instance area under the curve (AUC) for a receiver-operator curve (ROC). Thus, given that 1) our VIM applies to any model fitting procedure, 2) under assumptions has meaningful clinical (causal) interpretations and 3) has asymptotic (influence-curve) based robust inference, it provides a compelling alternative to existing methods for estimating variable importance in high-dimensional clinical (or other) data.

Suggested Citation

  • Iván Díaz & Alan Hubbard & Anna Decker & Mitchell Cohen, 2015. "Variable Importance and Prediction Methods for Longitudinal Problems with Missing Variables," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
  • Handle: RePEc:plo:pone00:0120031
    DOI: 10.1371/journal.pone.0120031
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120031
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0120031&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0120031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. van der Laan Mark J., 2006. "Statistical Inference for Variable Importance," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-33, February.
    2. Díaz Muñoz Iván & van der Laan Mark J., 2011. "Super Learner Based Conditional Density Estimation with Application to Marginal Structural Models," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-20, October.
    3. van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S Ariane Christie & Amanda S Conroy & Rachael A Callcut & Alan E Hubbard & Mitchell J Cohen, 2019. "Dynamic multi-outcome prediction after injury: Applying adaptive machine learning for precision medicine in trauma," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tuglus Catherine & van der Laan Mark J., 2011. "Repeated Measures Semiparametric Regression Using Targeted Maximum Likelihood Methodology with Application to Transcription Factor Activity Discovery," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-31, January.
    2. Rose Sherri & van der Laan Mark J., 2008. "Simple Optimal Weighting of Cases and Controls in Case-Control Studies," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-24, September.
    3. Antoine Chambaz & Mark J. Laan, 2014. "Inference in Targeted Group-Sequential Covariate-Adjusted Randomized Clinical Trials," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 104-140, March.
    4. Guanbo Wang & Mireille E. Schnitzer & Dick Menzies & Piret Viiklepp & Timothy H. Holtz & Andrea Benedetti, 2020. "Estimating treatment importance in multidrug‐resistant tuberculosis using Targeted Learning: An observational individual patient data network meta‐analysis," Biometrics, The International Biometric Society, vol. 76(3), pages 1007-1016, September.
    5. Geeven Geert & van der Laan Mark J. & de Gunst Mathisca C.M., 2012. "Comparison of Targeted Maximum Likelihood and Shrinkage Estimators of Parameters in Gene Networks," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-29, September.
    6. Elise D Riley & Torsten B Neilands & Kelly Moore & Jennifer Cohen & David R Bangsberg & Diane Havlir, 2012. "Social, Structural and Behavioral Determinants of Overall Health Status in a Cohort of Homeless and Unstably Housed HIV-Infected Men," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.
    7. Tuglus Catherine & van der Laan Mark J., 2009. "Modified FDR Controlling Procedure for Multi-Stage Analyses," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-15, February.
    8. Iván Díaz Muñoz & Mark van der Laan, 2012. "Population Intervention Causal Effects Based on Stochastic Interventions," Biometrics, The International Biometric Society, vol. 68(2), pages 541-549, June.
    9. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    10. S Ariane Christie & Amanda S Conroy & Rachael A Callcut & Alan E Hubbard & Mitchell J Cohen, 2019. "Dynamic multi-outcome prediction after injury: Applying adaptive machine learning for precision medicine in trauma," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-13, April.
    11. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    12. Michael Rosenblum & Nicholas P. Jewell & Mark van der Laan & Stephen Shiboski & Ariane van der Straten & Nancy Padian, 2009. "Analysing direct effects in randomized trials with secondary interventions: an application to human immunodeficiency virus prevention trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 443-465, April.
    13. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    14. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    15. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    16. Brian D. Williamson & Peter B. Gilbert & Marco Carone & Noah Simon, 2021. "Nonparametric variable importance assessment using machine learning techniques," Biometrics, The International Biometric Society, vol. 77(1), pages 9-22, March.
    17. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    18. Stitelman Ori M & van der Laan Mark J., 2010. "Collaborative Targeted Maximum Likelihood for Time to Event Data," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-46, June.
    19. Martin Huber & Michael Lechner & Giovanni Mellace, 2016. "The Finite Sample Performance of Estimators for Mediation Analysis Under Sequential Conditional Independence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 139-160, January.
    20. Gruber Susan & van der Laan Mark J., 2010. "A Targeted Maximum Likelihood Estimator of a Causal Effect on a Bounded Continuous Outcome," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-18, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0120031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.