IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0081936.html
   My bibliography  Save this article

How the Motility Pattern of Bacteria Affects Their Dispersal and Chemotaxis

Author

Listed:
  • Johannes Taktikos
  • Holger Stark
  • Vasily Zaburdaev

Abstract

Most bacteria at certain stages of their life cycle are able to move actively; they can swim in a liquid or crawl on various surfaces. A typical path of the moving cell often resembles the trajectory of a random walk. However, bacteria are capable of modifying their apparently random motion in response to changing environmental conditions. As a result, bacteria can migrate towards the source of nutrients or away from harmful chemicals. Surprisingly, many bacterial species that were studied have several distinct motility patterns, which can be theoretically modeled by a unifying random walk approach. We use this approach to quantify the process of cell dispersal in a homogeneous environment and show how the bacterial drift velocity towards the source of attracting chemicals is affected by the motility pattern of the bacteria. Our results open up the possibility of accessing additional information about the intrinsic response of the cells using macroscopic observations of bacteria moving in inhomogeneous environments.

Suggested Citation

  • Johannes Taktikos & Holger Stark & Vasily Zaburdaev, 2013. "How the Motility Pattern of Bacteria Affects Their Dispersal and Chemotaxis," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
  • Handle: RePEc:plo:pone00:0081936
    DOI: 10.1371/journal.pone.0081936
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081936
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0081936&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0081936?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Passucci & Megan E Brasch & James H Henderson & Vasily Zaburdaev & M Lisa Manning, 2019. "Identifying the mechanism for superdiffusivity in mouse fibroblast motility," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-15, February.
    2. Zhang, Bing & Li, Wei & Guo, Yuan & Zhang, Zhiqiang & Shi, Wenxin & Cui, Fuyi & Lens, Piet N.L. & Tay, Joo Hwa, 2020. "Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Christina Kurzthaler & Suvendu Mandal & Tapomoy Bhattacharjee & Hartmut Löwen & Sujit S. Datta & Howard A. Stone, 2021. "A geometric criterion for the optimal spreading of active polymers in porous media," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Zhou, Yu & Leung, Yee & Chan, Lung Sang, 2017. "Oscillatory tendency of interevent direction in earthquake sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 120-130.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0081936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.