IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0006247.html
   My bibliography  Save this article

A Spike-Timing Pattern Based Neural Network Model for the Study of Memory Dynamics

Author

Listed:
  • Jian K Liu
  • Zhen-Su She

Abstract

It is well accepted that the brain's computation relies on spatiotemporal activity of neural networks. In particular, there is growing evidence of the importance of continuously and precisely timed spiking activity. Therefore, it is important to characterize memory states in terms of spike-timing patterns that give both reliable memory of firing activities and precise memory of firing timings. The relationship between memory states and spike-timing patterns has been studied empirically with large-scale recording of neuron population in recent years. Here, by using a recurrent neural network model with dynamics at two time scales, we construct a dynamical memory network model which embeds both fast neural and synaptic variation and slow learning dynamics. A state vector is proposed to describe memory states in terms of spike-timing patterns of neural population, and a distance measure of state vector is defined to study several important phenomena of memory dynamics: partial memory recall, learning efficiency, learning with correlated stimuli. We show that the distance measure can capture the timing difference of memory states. In addition, we examine the influence of network topology on learning ability, and show that local connections can increase the network's ability to embed more memory states. Together theses results suggest that the proposed system based on spike-timing patterns gives a productive model for the study of detailed learning and memory dynamics.

Suggested Citation

  • Jian K Liu & Zhen-Su She, 2009. "A Spike-Timing Pattern Based Neural Network Model for the Study of Memory Dynamics," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-8, July.
  • Handle: RePEc:plo:pone00:0006247
    DOI: 10.1371/journal.pone.0006247
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006247
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0006247&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0006247?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard H. R. Hahnloser & Alexay A. Kozhevnikov & Michale S. Fee, 2002. "An ultra-sparse code underliesthe generation of neural sequences in a songbird," Nature, Nature, vol. 419(6902), pages 65-70, September.
    2. Kenneth D. Harris & Jozsef Csicsvari & Hajime Hirase & George Dragoi & György Buzsáki, 2003. "Organization of cell assemblies in the hippocampus," Nature, Nature, vol. 424(6948), pages 552-556, July.
    3. Sen Song & Per Jesper Sjöström & Markus Reigl & Sacha Nelson & Dmitri B Chklovskii, 2005. "Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits," PLOS Biology, Public Library of Science, vol. 3(3), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Remus Oşan & Liping Zhu & Shy Shoham & Joe Z Tsien, 2007. "Subspace Projection Approaches to Classification and Visualization of Neural Network-Level Encoding Patterns," PLOS ONE, Public Library of Science, vol. 2(5), pages 1-14, May.
    2. Dhanya Parameshwaran & Upinder S Bhalla, 2013. "Theta Frequency Background Tunes Transmission but Not Summation of Spiking Responses," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    3. Asako Noguchi & Roman Huszár & Shota Morikawa & György Buzsáki & Yuji Ikegaya, 2022. "Inhibition allocates spikes during hippocampal ripples," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Jimok Kim & Richard W Tsien & Bradley E Alger, 2012. "An Improved Test for Detecting Multiplicative Homeostatic Synaptic Scaling," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    5. Giovanni Diana & Thomas T J Sainsbury & Martin P Meyer, 2019. "Bayesian inference of neuronal assemblies," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-31, October.
    6. Christoph Hartmann & Andreea Lazar & Bernhard Nessler & Jochen Triesch, 2015. "Where’s the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-35, December.
    7. Fabian Heim & Ezequiel Mendoza & Avani Koparkar & Daniela Vallentin, 2024. "Disinhibition enables vocal repertoire expansion after a critical period," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Carina Curto & Vladimir Itskov, 2008. "Cell Groups Reveal Structure of Stimulus Space," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-13, October.
    9. Omer Hazon & Victor H. Minces & David P. Tomàs & Surya Ganguli & Mark J. Schnitzer & Pablo E. Jercog, 2022. "Noise correlations in neural ensemble activity limit the accuracy of hippocampal spatial representations," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Vladimir V Klinshov & Jun-nosuke Teramae & Vladimir I Nekorkin & Tomoki Fukai, 2014. "Dense Neuron Clustering Explains Connectivity Statistics in Cortical Microcircuits," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-12, April.
    11. John Palmer & Adam Keane & Pulin Gong, 2017. "Learning and executing goal-directed choices by internally generated sequences in spiking neural circuits," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-23, July.
    12. Chong Guo & Vincent Huson & Evan Z. Macosko & Wade G. Regehr, 2021. "Graded heterogeneity of metabotropic signaling underlies a continuum of cell-intrinsic temporal responses in unipolar brush cells," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    13. Naoki Hiratani & Tomoki Fukai, 2015. "Mixed Signal Learning by Spike Correlation Propagation in Feedback Inhibitory Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-36, April.
    14. Einat Granot-Atedgi & Gašper Tkačik & Ronen Segev & Elad Schneidman, 2013. "Stimulus-dependent Maximum Entropy Models of Neural Population Codes," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-14, March.
    15. Yang Yiling & Katharine Shapcott & Alina Peter & Johanna Klon-Lipok & Huang Xuhui & Andreea Lazar & Wolf Singer, 2023. "Robust encoding of natural stimuli by neuronal response sequences in monkey visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    16. David Kappel & Bernhard Nessler & Wolfgang Maass, 2014. "STDP Installs in Winner-Take-All Circuits an Online Approximation to Hidden Markov Model Learning," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-22, March.
    17. Seif Eldawlatly & Karim G Oweiss, 2011. "Millisecond-Timescale Local Network Coding in the Rat Primary Somatosensory Cortex," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-14, June.
    18. Benjamin M. Zemel & Alexander A. Nevue & Andre Dagostin & Peter V. Lovell & Claudio V. Mello & Henrique Gersdorff, 2021. "Resurgent Na+ currents promote ultrafast spiking in projection neurons that drive fine motor control," Nature Communications, Nature, vol. 12(1), pages 1-23, December.
    19. Michael J Wolff & Janina Jochim & Elkan G Akyürek & Timothy J Buschman & Mark G Stokes, 2020. "Drifting codes within a stable coding scheme for working memory," PLOS Biology, Public Library of Science, vol. 18(3), pages 1-19, March.
    20. Morgan A. Brown & Kara M. Zappitelli & Loveprit Singh & Rachel C. Yuan & Melissa Bemrose & Valerie Brogden & David J. Miller & Matthew C. Smear & Stuart F. Cogan & Timothy J. Gardner, 2023. "Direct laser writing of 3D electrodes on flexible substrates," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0006247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.