IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0055607.html
   My bibliography  Save this article

Theta Frequency Background Tunes Transmission but Not Summation of Spiking Responses

Author

Listed:
  • Dhanya Parameshwaran
  • Upinder S Bhalla

Abstract

Hippocampal neurons are known to fire as a function of frequency and phase of spontaneous network rhythms, associated with the animal's behaviour. This dependence is believed to give rise to precise rate and temporal codes. However, it is not well understood how these periodic membrane potential fluctuations affect the integration of synaptic inputs. Here we used sinusoidal current injection to the soma of CA1 pyramidal neurons in the rat brain slice to simulate background oscillations in the physiologically relevant theta and gamma frequency range. We used a detailed compartmental model to show that somatic current injection gave comparable results to more physiological synaptically driven theta rhythms incorporating excitatory input in the dendrites, and inhibitory input near the soma. We systematically varied the phase of synaptic inputs with respect to this background, and recorded changes in response and summation properties of CA1 neurons using whole-cell patch recordings. The response of the cell was dependent on both the phase of synaptic inputs and frequency of the background input. The probability of the cell spiking for a given synaptic input was up to 40% greater during the depolarized phases between 30–135 degrees of theta frequency current injection. Summation gain on the other hand, was not affected either by the background frequency or the phasic afferent inputs. This flat summation gain, coupled with the enhanced spiking probability during depolarized phases of the theta cycle, resulted in enhanced transmission of summed inputs during the same phase window of 30–135 degrees. Overall, our study suggests that although oscillations provide windows of opportunity to selectively boost transmission and EPSP size, summation of synaptic inputs remains unaffected during membrane oscillations.

Suggested Citation

  • Dhanya Parameshwaran & Upinder S Bhalla, 2013. "Theta Frequency Background Tunes Transmission but Not Summation of Spiking Responses," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
  • Handle: RePEc:plo:pone00:0055607
    DOI: 10.1371/journal.pone.0055607
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055607
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055607&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0055607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. R. Mehta & A. K. Lee & M. A. Wilson, 2002. "Role of experience and oscillations in transforming a rate code into a temporal code," Nature, Nature, vol. 417(6890), pages 741-746, June.
    2. Kenneth D. Harris & Jozsef Csicsvari & Hajime Hirase & George Dragoi & György Buzsáki, 2003. "Organization of cell assemblies in the hippocampus," Nature, Nature, vol. 424(6948), pages 552-556, July.
    3. Thilo Womelsdorf & Pascal Fries & Partha P. Mitra & Robert Desimone, 2006. "Gamma-band synchronization in visual cortex predicts speed of change detection," Nature, Nature, vol. 439(7077), pages 733-736, February.
    4. Laura Lee Colgin & Tobias Denninger & Marianne Fyhn & Torkel Hafting & Tora Bonnevie & Ole Jensen & May-Britt Moser & Edvard I. Moser, 2009. "Frequency of gamma oscillations routes flow of information in the hippocampus," Nature, Nature, vol. 462(7271), pages 353-357, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caleb Kemere & Margaret F Carr & Mattias P Karlsson & Loren M Frank, 2013. "Rapid and Continuous Modulation of Hippocampal Network State during Exploration of New Places," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-16, September.
    2. Eleonora Russo & Nadine Becker & Aleks P. F. Domanski & Timothy Howe & Kipp Freud & Daniel Durstewitz & Matthew W. Jones, 2024. "Integration of rate and phase codes by hippocampal cell-assemblies supports flexible encoding of spatiotemporal context," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Adele Diederich & Annette Schomburg & Hans Colonius, 2012. "Saccadic Reaction Times to Audiovisual Stimuli Show Effects of Oscillatory Phase Reset," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    4. Pengcheng Zhou & Shawn D Burton & Adam C Snyder & Matthew A Smith & Nathaniel N Urban & Robert E Kass, 2015. "Establishing a Statistical Link between Network Oscillations and Neural Synchrony," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-25, October.
    5. Giovanni Diana & Thomas T J Sainsbury & Martin P Meyer, 2019. "Bayesian inference of neuronal assemblies," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-31, October.
    6. Vincent Douchamps & Matteo Volo & Alessandro Torcini & Demian Battaglia & Romain Goutagny, 2024. "Gamma oscillatory complexity conveys behavioral information in hippocampal networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. repec:plo:pcbi00:1002667 is not listed on IDEAS
    8. Carina Curto & Vladimir Itskov, 2008. "Cell Groups Reveal Structure of Stimulus Space," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-13, October.
    9. repec:plo:pone00:0006247 is not listed on IDEAS
    10. Louis Kang & Taro Toyoizumi, 2024. "Distinguishing examples while building concepts in hippocampal and artificial networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Sara Mahallati & James C Bezdek & Milos R Popovic & Taufik A Valiante, 2019. "Cluster tendency assessment in neuronal spike data," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-29, November.
    12. Einat Granot-Atedgi & Gašper Tkačik & Ronen Segev & Elad Schneidman, 2013. "Stimulus-dependent Maximum Entropy Models of Neural Population Codes," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-14, March.
    13. repec:plo:pone00:0102591 is not listed on IDEAS
    14. Gray Umbach & Ryan Tan & Joshua Jacobs & Brad E. Pfeiffer & Bradley Lega, 2022. "Flexibility of functional neuronal assemblies supports human memory," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Matthieu Gilson & Tomoki Fukai, 2011. "Stability versus Neuronal Specialization for STDP: Long-Tail Weight Distributions Solve the Dilemma," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-18, October.
    16. Bálint Király & Andor Domonkos & Márta Jelitai & Vítor Lopes-dos-Santos & Sergio Martínez-Bellver & Barnabás Kocsis & Dániel Schlingloff & Abhilasha Joshi & Minas Salib & Richárd Fiáth & Péter Barthó , 2023. "The medial septum controls hippocampal supra-theta oscillations," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    17. repec:plo:pcbi00:1006741 is not listed on IDEAS
    18. repec:plo:pcbi00:1006757 is not listed on IDEAS
    19. repec:plo:pcbi00:1005893 is not listed on IDEAS
    20. Marije ter Wal & Juan Linde-Domingo & Julia Lifanov & Frédéric Roux & Luca D. Kolibius & Stephanie Gollwitzer & Johannes Lang & Hajo Hamer & David Rollings & Vijay Sawlani & Ramesh Chelvarajah & Bernh, 2021. "Theta rhythmicity governs human behavior and hippocampal signals during memory-dependent tasks," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    21. Robert R Kerr & Anthony N Burkitt & Doreen A Thomas & Matthieu Gilson & David B Grayden, 2013. "Delay Selection by Spike-Timing-Dependent Plasticity in Recurrent Networks of Spiking Neurons Receiving Oscillatory Inputs," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-19, February.
    22. Oliver Barnstedt & Petra Mocellin & Stefan Remy, 2024. "A hippocampus-accumbens code guides goal-directed appetitive behavior," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    23. Mamiko Arai & Vicky Brandt & Yuri Dabaghian, 2014. "The Effects of Theta Precession on Spatial Learning and Simplicial Complex Dynamics in a Topological Model of the Hippocampal Spatial Map," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-14, June.
    24. Matthieu Gilson & Tomoki Fukai & Anthony N Burkitt, 2012. "Spectral Analysis of Input Spike Trains by Spike-Timing-Dependent Plasticity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-22, July.
    25. Jie Zheng & Mar Yebra & Andrea G. P. Schjetnan & Kramay Patel & Chaim N. Katz & Michael Kyzar & Clayton P. Mosher & Suneil K. Kalia & Jeffrey M. Chung & Chrystal M. Reed & Taufik A. Valiante & Adam N., 2024. "Theta phase precession supports memory formation and retrieval of naturalistic experience in humans," Nature Human Behaviour, Nature, vol. 8(12), pages 2423-2436, December.
    26. Natalia Grion & Athena Akrami & Yangfang Zuo & Federico Stella & Mathew E Diamond, 2016. "Coherence between Rat Sensorimotor System and Hippocampus Is Enhanced during Tactile Discrimination," PLOS Biology, Public Library of Science, vol. 14(2), pages 1-26, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0055607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.