IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0003734.html
   My bibliography  Save this article

Ordered Patterns of Cell Shape and Orientational Correlation during Spontaneous Cell Migration

Author

Listed:
  • Yusuke T Maeda
  • Junya Inose
  • Miki Y Matsuo
  • Suguru Iwaya
  • Masaki Sano

Abstract

Background: In the absence of stimuli, most motile eukaryotic cells move by spontaneously coordinating cell deformation with cell movement in the absence of stimuli. Yet little is known about how cells change their own shape and how cells coordinate the deformation and movement. Here, we investigated the mechanism of spontaneous cell migration by using computational analyses. Methodology: We observed spontaneously migrating Dictyostelium cells in both a vegetative state (round cell shape and slow motion) and starved one (elongated cell shape and fast motion). We then extracted regular patterns of morphological dynamics and the pattern-dependent systematic coordination with filamentous actin (F-actin) and cell movement by statistical dynamic analyses. Conclusions/Significance: We found that Dictyostelium cells in both vegetative and starved states commonly organize their own shape into three ordered patterns, elongation, rotation, and oscillation, in the absence of external stimuli. Further, cells inactivated for PI3-kinase (PI3K) and/or PTEN did not show ordered patterns due to the lack of spatial control in pseudopodial formation in both the vegetative and starved states. We also found that spontaneous polarization was achieved in starved cells by asymmetric localization of PTEN and F-actin. This breaking of the symmetry of protein localization maintained the leading edge and considerably enhanced the persistence of directed migration, and overall random exploration was ensured by switching among the different ordered patterns. Our findings suggest that Dictyostelium cells spontaneously create the ordered patterns of cell shape mediated by PI3K/PTEN/F-actin and control the direction of cell movement by coordination with these patterns even in the absence of external stimuli.

Suggested Citation

  • Yusuke T Maeda & Junya Inose & Miki Y Matsuo & Suguru Iwaya & Masaki Sano, 2008. "Ordered Patterns of Cell Shape and Orientational Correlation during Spontaneous Cell Migration," PLOS ONE, Public Library of Science, vol. 3(11), pages 1-14, November.
  • Handle: RePEc:plo:pone00:0003734
    DOI: 10.1371/journal.pone.0003734
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003734
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0003734&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0003734?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liang Li & Simon F Nørrelykke & Edward C Cox, 2008. "Persistent Cell Motion in the Absence of External Signals: A Search Strategy for Eukaryotic Cells," PLOS ONE, Public Library of Science, vol. 3(5), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurent Golé & Charlotte Rivière & Yoshinori Hayakawa & Jean-Paul Rieu, 2011. "A Quorum-Sensing Factor in Vegetative Dictyostelium Discoideum Cells Revealed by Quantitative Migration Analysis," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-9, November.
    2. Thomas Kaindl & Harden Rieger & Lisa-Mareike Kaschel & Ulrike Engel & Anja Schmaus & Jonathan Sleeman & Motomu Tanaka, 2012. "Spatio-Temporal Patterns of Pancreatic Cancer Cells Expressing CD44 Isoforms on Supported Membranes Displaying Hyaluronic Acid Oligomers Arrays," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-10, August.
    3. Hyun Gyu Lee & Kyoung J Lee, 2021. "Neighbor-enhanced diffusivity in dense, cohesive cell populations," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-26, September.
    4. Taeseok Daniel Yang & Jin-Sung Park & Youngwoon Choi & Wonshik Choi & Tae-Wook Ko & Kyoung J Lee, 2011. "Zigzag Turning Preference of Freely Crawling Cells," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-9, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Priscila C A da Silva & Tiago V Rosembach & Anésia A Santos & Márcio S Rocha & Marcelo L Martins, 2014. "Normal and Tumoral Melanocytes Exhibit q-Gaussian Random Search Patterns," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    2. Murguía, J.S. & Rosu, H.C. & Jimenez, A. & Gutiérrez-Medina, B. & García-Meza, J.V., 2015. "The Hurst exponents of Nitzschia sp. diatom trajectories observed by light microscopy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 176-184.
    3. Toman, Kellan & Voulgarakis, Nikolaos K., 2022. "Stochastic pursuit-evasion curves for foraging dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    4. Chopra, Abha & Nanjundiah, Vidyanand, 2013. "The precision with which single cells of Dictyostelium discoideum can locate a source of cyclic AMP," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 3-12.
    5. Sui Huang, 2016. "Where to Go: Breaking the Symmetry in Cell Motility," PLOS Biology, Public Library of Science, vol. 14(5), pages 1-10, May.
    6. Can Guven & Erin Rericha & Edward Ott & Wolfgang Losert, 2013. "Modeling and Measuring Signal Relay in Noisy Directed Migration of Cell Groups," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-13, May.
    7. Laurent Golé & Charlotte Rivière & Yoshinori Hayakawa & Jean-Paul Rieu, 2011. "A Quorum-Sensing Factor in Vegetative Dictyostelium Discoideum Cells Revealed by Quantitative Migration Analysis," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-9, November.
    8. Taeseok Daniel Yang & Jin-Sung Park & Youngwoon Choi & Wonshik Choi & Tae-Wook Ko & Kyoung J Lee, 2011. "Zigzag Turning Preference of Freely Crawling Cells," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-9, June.
    9. Hélia Serrano & Ramón F. Álvarez-Estrada, 2023. "Characterization of the Mean First-Passage Time Function Subject to Advection in Annular-like Domains," Mathematics, MDPI, vol. 11(24), pages 1-17, December.
    10. Oliver Nagel & Can Guven & Matthias Theves & Meghan Driscoll & Wolfgang Losert & Carsten Beta, 2014. "Geometry-Driven Polarity in Motile Amoeboid Cells," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-20, December.
    11. de Almeida, Rita M.C. & Giardini, Guilherme S.Y. & Vainstein, Mendeli & Glazier, James A. & Thomas, Gilberto L., 2022. "Exact solution for the Anisotropic Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    12. Peter J M Van Haastert, 2010. "A Model for a Correlated Random Walk Based on the Ordered Extension of Pseudopodia," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-11, August.
    13. Azevedo, T.N. & Rizzi, L.G., 2022. "Time-correlated forces and biological variability in cell motility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    14. Robert M Cooper & Ned S Wingreen & Edward C Cox, 2012. "An Excitable Cortex and Memory Model Successfully Predicts New Pseudopod Dynamics," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-12, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0003734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.