IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0001021.html
   My bibliography  Save this article

Maladaptation and the Paradox of Robustness in Evolution

Author

Listed:
  • Steven A Frank

Abstract

Background: Organisms use a variety of mechanisms to protect themselves against perturbations. For example, repair mechanisms fix damage, feedback loops keep homeostatic systems at their setpoints, and biochemical filters distinguish signal from noise. Such buffering mechanisms are often discussed in terms of robustness, which may be measured by reduced sensitivity of performance to perturbations. Methodology/Principal Findings: I use a mathematical model to analyze the evolutionary dynamics of robustness in order to understand aspects of organismal design by natural selection. I focus on two characters: one character performs an adaptive task; the other character buffers the performance of the first character against perturbations. Increased perturbations favor enhanced buffering and robustness, which in turn decreases sensitivity and reduces the intensity of natural selection on the adaptive character. Reduced selective pressure on the adaptive character often leads to a less costly, lower performance trait. Conclusions/Significance: The paradox of robustness arises from evolutionary dynamics: enhanced robustness causes an evolutionary reduction in the adaptive performance of the target character, leading to a degree of maladaptation compared to what could be achieved by natural selection in the absence of robustness mechanisms. Over evolutionary time, buffering traits may become layered on top of each other, while the underlying adaptive traits become replaced by cheaper, lower performance components. The paradox of robustness has widespread implications for understanding organismal design.

Suggested Citation

  • Steven A Frank, 2007. "Maladaptation and the Paradox of Robustness in Evolution," PLOS ONE, Public Library of Science, vol. 2(10), pages 1-6, October.
  • Handle: RePEc:plo:pone00:0001021
    DOI: 10.1371/journal.pone.0001021
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001021
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0001021&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0001021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steven A Frank, 2013. "Evolution of Robustness and Cellular Stochasticity of Gene Expression," PLOS Biology, Public Library of Science, vol. 11(6), pages 1-3, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0001021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.