IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1011483.html
   My bibliography  Save this article

A novel statistical framework for meta-analysis of total mediation effect with high-dimensional omics mediators in large-scale genomic consortia

Author

Listed:
  • Zhichao Xu
  • Peng Wei

Abstract

Meta-analysis is used to aggregate the effects of interest across multiple studies, while its methodology is largely underexplored in mediation analysis, particularly in estimating the total mediation effect of high-dimensional omics mediators. Large-scale genomic consortia, such as the Trans-Omics for Precision Medicine (TOPMed) program, comprise multiple cohorts with diverse technologies to elucidate the genetic architecture and biological mechanisms underlying complex human traits and diseases. Leveraging the recent established asymptotic standard error of the R-squared (R2)-based mediation effect estimation for high-dimensional omics mediators, we have developed a novel meta-analysis framework requiring only summary statistics and allowing inter-study heterogeneity. Whereas the proposed meta-analysis can uniquely evaluate and account for potential effect heterogeneity across studies due to, for example, varying genomic profiling platforms, our extensive simulations showed that the developed method was more computationally efficient and yielded satisfactory operating characteristics comparable to analysis of the pooled individual-level data when there was no inter-study heterogeneity. We applied the developed method to 5 TOPMed studies with over 5800 participants to estimate the mediation effects of gene expression on age-related variation in systolic blood pressure and sex-related variation in high-density lipoprotein (HDL) cholesterol. The proposed method is available in R package MetaR2M on GitHub.Author summary: We have developed a novel meta-analysis framework to combine the estimates of the total mediation effect of high-dimensional omics mediators on complex traits from multiple studies in large-scale genomic consortia. By applying the developed method to genome-wide gene expression data from five studies with over 5,800 participants, we were able to demonstrate that our approach is not only computationally efficient but also yields reliable results. We illustrate how certain genes and biological pathways can influence age-related changes in blood pressure and sex differences in high-density lipoprotein (HDL) cholesterol levels. Our new tool, available as an R package MetaR2M on GitHub, makes it easier for researchers to analyze such complex data. This could lead to a better understanding of the genetic architecture and biological mechanisms underlying complex human traits and diseases.

Suggested Citation

  • Zhichao Xu & Peng Wei, 2024. "A novel statistical framework for meta-analysis of total mediation effect with high-dimensional omics mediators in large-scale genomic consortia," PLOS Genetics, Public Library of Science, vol. 20(11), pages 1-23, November.
  • Handle: RePEc:plo:pgen00:1011483
    DOI: 10.1371/journal.pgen.1011483
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1011483
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1011483&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1011483?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James Y. Dai & Janet L. Stanford & Michael LeBlanc, 2022. "A Multiple-Testing Procedure for High-Dimensional Mediation Hypotheses," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 198-213, January.
    2. Kurex Sidik & Jeffrey N. Jonkman, 2005. "Simple heterogeneity variance estimation for meta‐analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(2), pages 367-384, April.
    3. Imai, Kosuke & Yamamoto, Teppei, 2013. "Identification and Sensitivity Analysis for Multiple Causal Mechanisms: Revisiting Evidence from Framing Experiments," Political Analysis, Cambridge University Press, vol. 21(2), pages 141-171, April.
    4. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Xizhen & Zhu, Yeying & Huang, Yuan & Ghosh, Debashis, 2022. "High-dimensional causal mediation analysis based on partial linear structural equation models," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    2. Matthew G. Cox & Yasemin Kisbu-Sakarya & Milica MioÄ ević & David P. MacKinnon, 2013. "Sensitivity Plots for Confounder Bias in the Single Mediator Model," Evaluation Review, , vol. 37(5), pages 405-431, October.
    3. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    4. Sauvenier, Mathieu & Van Bellegem, Sébastien, 2023. "Direction Identification and Minimax Estimation by Generalized Eigenvalue Problem in High Dimensional Sparse Regression," LIDAM Discussion Papers CORE 2023005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Ahmed Ismaïl & Hartikainen Anna-Liisa & Järvelin Marjo-Riitta & Richardson Sylvia, 2011. "False Discovery Rate Estimation for Stability Selection: Application to Genome-Wide Association Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-20, November.
    6. Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.
    7. Shi Chen & Wolfgang Karl Hardle & Brenda L'opez Cabrera, 2020. "Regularization Approach for Network Modeling of German Power Derivative Market," Papers 2009.09739, arXiv.org.
    8. N. Neykov & P. Filzmoser & P. Neytchev, 2014. "Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator," Statistical Papers, Springer, vol. 55(1), pages 187-207, February.
    9. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    10. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    11. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    12. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    13. Sangjin Kim & Jong-Min Kim, 2019. "Two-Stage Classification with SIS Using a New Filter Ranking Method in High Throughput Data," Mathematics, MDPI, vol. 7(6), pages 1-16, May.
    14. Martin Huber & Michael Lechner & Giovanni Mellace, 2017. "Why Do Tougher Caseworkers Increase Employment? The Role of Program Assignment as a Causal Mechanism," The Review of Economics and Statistics, MIT Press, vol. 99(1), pages 180-183, March.
    15. Anders Bredahl Kock, 2012. "On the Oracle Property of the Adaptive Lasso in Stationary and Nonstationary Autoregressions," CREATES Research Papers 2012-05, Department of Economics and Business Economics, Aarhus University.
    16. Hung Hung & Su‐Yun Huang, 2019. "Sufficient dimension reduction via random‐partitions for the large‐p‐small‐n problem," Biometrics, The International Biometric Society, vol. 75(1), pages 245-255, March.
    17. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    18. Li, Xinyi & Wang, Li & Nettleton, Dan, 2019. "Sparse model identification and learning for ultra-high-dimensional additive partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 204-228.
    19. Li, Peili & Jiao, Yuling & Lu, Xiliang & Kang, Lican, 2022. "A data-driven line search rule for support recovery in high-dimensional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    20. Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1011483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.