IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1003491.html
   My bibliography  Save this article

Effectively Identifying eQTLs from Multiple Tissues by Combining Mixed Model and Meta-analytic Approaches

Author

Listed:
  • Jae Hoon Sul
  • Buhm Han
  • Chun Ye
  • Ted Choi
  • Eleazar Eskin

Abstract

Gene expression data, in conjunction with information on genetic variants, have enabled studies to identify expression quantitative trait loci (eQTLs) or polymorphic locations in the genome that are associated with expression levels. Moreover, recent technological developments and cost decreases have further enabled studies to collect expression data in multiple tissues. One advantage of multiple tissue datasets is that studies can combine results from different tissues to identify eQTLs more accurately than examining each tissue separately. The idea of aggregating results of multiple tissues is closely related to the idea of meta-analysis which aggregates results of multiple genome-wide association studies to improve the power to detect associations. In principle, meta-analysis methods can be used to combine results from multiple tissues. However, eQTLs may have effects in only a single tissue, in all tissues, or in a subset of tissues with possibly different effect sizes. This heterogeneity in terms of effects across multiple tissues presents a key challenge to detect eQTLs. In this paper, we develop a framework that leverages two popular meta-analysis methods that address effect size heterogeneity to detect eQTLs across multiple tissues. We show by using simulations and multiple tissue data from mouse that our approach detects many eQTLs undetected by traditional eQTL methods. Additionally, our method provides an interpretation framework that accurately predicts whether an eQTL has an effect in a particular tissue.Author Summary: The combination of gene expression and genetic variation data has enabled the identification of genetic variants that affect gene expression levels. It has been shown that some variants influence gene expression in only one tissue while others influence gene expression in multiple tissues. However, an analysis of multiple tissue data using traditional statistical methods typically fails to identify those variants that affect multiple tissues because each tissue is treated independently and due to low statistical power, the effect in a given tissue may be missed. Building on recent advances in statistical methods for meta-analysis and mixed models, we present a novel method that combines information from multiple tissues to identify genetic variation that affects multiple tissues. We show that our method detects more genetic variation that influences multiple tissues than traditional statistical methods both on simulated and real data.

Suggested Citation

  • Jae Hoon Sul & Buhm Han & Chun Ye & Ted Choi & Eleazar Eskin, 2013. "Effectively Identifying eQTLs from Multiple Tissues by Combining Mixed Model and Meta-analytic Approaches," PLOS Genetics, Public Library of Science, vol. 9(6), pages 1-13, June.
  • Handle: RePEc:plo:pgen00:1003491
    DOI: 10.1371/journal.pgen.1003491
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1003491
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1003491&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1003491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vivian G. Cheung & Richard S. Spielman & Kathryn G. Ewens & Teresa M. Weber & Michael Morley & Joshua T. Burdick, 2005. "Mapping determinants of human gene expression by regional and genome-wide association," Nature, Nature, vol. 437(7063), pages 1365-1369, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zachary R. McCaw & Sheila M. Gaynor & Ryan Sun & Xihong Lin, 2023. "Leveraging a surrogate outcome to improve inference on a partially missing target outcome," Biometrics, The International Biometric Society, vol. 79(2), pages 1472-1484, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yixin Fang & Yang Feng & Ming Yuan, 2014. "Regularized principal components of heritability," Computational Statistics, Springer, vol. 29(3), pages 455-465, June.
    2. Barbara E Stranger & Stephen B Montgomery & Antigone S Dimas & Leopold Parts & Oliver Stegle & Catherine E Ingle & Magda Sekowska & George Davey Smith & David Evans & Maria Gutierrez-Arcelus & Alkes P, 2012. "Patterns of Cis Regulatory Variation in Diverse Human Populations," PLOS Genetics, Public Library of Science, vol. 8(4), pages 1-13, April.
    3. Ryan Abo & Gregory D Jenkins & Liewei Wang & Brooke L Fridley, 2012. "Identifying the Genetic Variation of Gene Expression Using Gene Sets: Application of Novel Gene Set eQTL Approach to PharmGKB and KEGG," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-11, August.
    4. Jin Hyun Ju & Sushila A Shenoy & Ronald G Crystal & Jason G Mezey, 2017. "An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-26, May.
    5. Ning Jiang & Minghui Wang & Tianye Jia & Lin Wang & Lindsey Leach & Christine Hackett & David Marshall & Zewei Luo, 2011. "A Robust Statistical Method for Association-Based eQTL Analysis," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-11, August.
    6. Paul C Boutros & Ivy D Moffat & Allan B Okey & Raimo Pohjanvirta, 2011. "mRNA Levels in Control Rat Liver Display Strain-Specific, Hereditary, and AHR-Dependent Components," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-15, July.
    7. Hui-Min Wang & Ching-Lin Hsiao & Ai-Ru Hsieh & Ying-Chao Lin & Cathy S J Fann, 2012. "Constructing Endophenotypes of Complex Diseases Using Non-Negative Matrix Factorization and Adjusted Rand Index," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-12, July.
    8. Heather E Wheeler & Kaanan P Shah & Jonathon Brenner & Tzintzuni Garcia & Keston Aquino-Michaels & GTEx Consortium & Nancy J Cox & Dan L Nicolae & Hae Kyung Im, 2016. "Survey of the Heritability and Sparse Architecture of Gene Expression Traits across Human Tissues," PLOS Genetics, Public Library of Science, vol. 12(11), pages 1-23, November.
    9. Josine L Min & Jennifer M Taylor & J Brent Richards & Tim Watts & Fredrik H Pettersson & John Broxholme & Kourosh R Ahmadi & Gabriela L Surdulescu & Ernesto Lowy & Christian Gieger & Chris Newton-Cheh, 2011. "The Use of Genome-Wide eQTL Associations in Lymphoblastoid Cell Lines to Identify Novel Genetic Pathways Involved in Complex Traits," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-14, July.
    10. Alexandra C Nica & Leopold Parts & Daniel Glass & James Nisbet & Amy Barrett & Magdalena Sekowska & Mary Travers & Simon Potter & Elin Grundberg & Kerrin Small & Åsa K Hedman & Veronique Bataille & Jo, 2011. "The Architecture of Gene Regulatory Variation across Multiple Human Tissues: The MuTHER Study," PLOS Genetics, Public Library of Science, vol. 7(2), pages 1-9, February.
    11. David M Evans & Marie Jo A Brion & Lavinia Paternoster & John P Kemp & George McMahon & Marcus Munafò & John B Whitfield & Sarah E Medland & Grant W Montgomery & The GIANT consortium & The CRP consort, 2013. "Mining the Human Phenome Using Allelic Scores That Index Biological Intermediates," PLOS Genetics, Public Library of Science, vol. 9(10), pages 1-15, October.
    12. Rudi Alberts & Peter Terpstra & Yang Li & Rainer Breitling & Jan-Peter Nap & Ritsert C Jansen, 2007. "Sequence Polymorphisms Cause Many False cis eQTLs," PLOS ONE, Public Library of Science, vol. 2(7), pages 1-5, July.
    13. Daria V Zhernakova & Eleonora de Klerk & Harm-Jan Westra & Anastasios Mastrokolias & Shoaib Amini & Yavuz Ariyurek & Rick Jansen & Brenda W Penninx & Jouke J Hottenga & Gonneke Willemsen & Eco J de Ge, 2013. "DeepSAGE Reveals Genetic Variants Associated with Alternative Polyadenylation and Expression of Coding and Non-coding Transcripts," PLOS Genetics, Public Library of Science, vol. 9(6), pages 1-15, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1003491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.