IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1011769.html
   My bibliography  Save this article

Are we really Bayesian? Probabilistic inference shows sub-optimal knowledge transfer

Author

Listed:
  • Chin-Hsuan Sophie Lin
  • Trang Thuy Do
  • Lee Unsworth
  • Marta I Garrido

Abstract

Numerous studies have found that the Bayesian framework, which formulates the optimal integration of the knowledge of the world (i.e. prior) and current sensory evidence (i.e. likelihood), captures human behaviours sufficiently well. However, there are debates regarding whether humans use precise but cognitively demanding Bayesian computations for behaviours. Across two studies, we trained participants to estimate hidden locations of a target drawn from priors with different levels of uncertainty. In each trial, scattered dots provided noisy likelihood information about the target location. Participants showed that they learned the priors and combined prior and likelihood information to infer target locations in a Bayes fashion. We then introduced a transfer condition presenting a trained prior and a likelihood that has never been put together during training. How well participants integrate this novel likelihood with their learned prior is an indicator of whether participants perform Bayesian computations. In one study, participants experienced the newly introduced likelihood, which was paired with a different prior, during training. Participants changed likelihood weighting following expected directions although the degrees of change were significantly lower than Bayes-optimal predictions. In another group, the novel likelihoods were never used during training. We found people integrated a new likelihood within (interpolation) better than the one outside (extrapolation) the range of their previous learning experience and they were quantitatively Bayes-suboptimal in both. We replicated the findings of both studies in a validation dataset. Our results showed that Bayesian behaviours may not always be achieved by a full Bayesian computation. Future studies can apply our approach to different tasks to enhance the understanding of decision-making mechanisms.Author summary: Bayesian decision theory has emerged as a unified approach for capturing a wide range of behaviours under uncertainty. However, behavioural evidence supporting that humans use explicit Bayesian computation is scarce. While it has been argued that knowledge generalization should be treated as hard evidence of the use of Bayesian strategies, results from previous work were inconclusive. Here, we develop a marker that effectively quantifies how well humans transfer learned priors to a new scenario. Our marker can be applied to various tasks and thus can provide a path forwarding the understanding of psychological and biological underpinnings of inferential behaviours.

Suggested Citation

  • Chin-Hsuan Sophie Lin & Trang Thuy Do & Lee Unsworth & Marta I Garrido, 2024. "Are we really Bayesian? Probabilistic inference shows sub-optimal knowledge transfer," PLOS Computational Biology, Public Library of Science, vol. 20(1), pages 1-25, January.
  • Handle: RePEc:plo:pcbi00:1011769
    DOI: 10.1371/journal.pcbi.1011769
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011769
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011769&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1011769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marc O. Ernst & Martin S. Banks, 2002. "Humans integrate visual and haptic information in a statistically optimal fashion," Nature, Nature, vol. 415(6870), pages 429-433, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Weiler & Vahid Rahmati & Marcel Isstas & Johann Wutke & Andreas Walter Stark & Christian Franke & Jürgen Graf & Christian Geis & Otto W. Witte & Mark Hübener & Jürgen Bolz & Troy W. Margrie & Kn, 2024. "A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    2. Loreen Hertäg & Katharina A. Wilmes & Claudia Clopath, 2025. "Uncertainty estimation with prediction-error circuits," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Catarina Mendonça & Pietro Mandelli & Ville Pulkki, 2016. "Modeling the Perception of Audiovisual Distance: Bayesian Causal Inference and Other Models," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-18, December.
    4. Jacques Pesnot Lerousseau & Cesare V. Parise & Marc O. Ernst & Virginie Wassenhove, 2022. "Multisensory correlation computations in the human brain identified by a time-resolved encoding model," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Marine Hainguerlot & Thibault Gajdos & Jean-Christophe Vergnaud & Vincent de Gardelle, 2023. "How Overconfidence Bias Influences Suboptimality in Perceptual Decision Making," PSE-Ecole d'économie de Paris (Postprint) hal-04197403, HAL.
    7. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    8. Patricia Besson & Christophe Bourdin & Lionel Bringoux, 2011. "A Comprehensive Model of Audiovisual Perception: Both Percept and Temporal Dynamics," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-11, August.
    9. Anthony Renard & Evan R. Harrell & Brice Bathellier, 2022. "Olfactory modulation of barrel cortex activity during active whisking and passive whisker stimulation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Kyriaki A. Tychola & Konstantinos Voulgaridis & Thomas Lagkas, 2023. "Tactile IoT and 5G & beyond schemes as key enabling technologies for the future metaverse," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 84(3), pages 363-385, November.
    12. Wendy J Adams, 2016. "The Development of Audio-Visual Integration for Temporal Judgements," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-17, April.
    13. Tim Genewein & Eduard Hez & Zeynab Razzaghpanah & Daniel A Braun, 2015. "Structure Learning in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-27, August.
    14. Xiaochen Zhang & Lingling Jin & Jie Zhao & Jiazhen Li & Ding-Bang Luh & Tiansheng Xia, 2022. "The Influences of Different Sensory Modalities and Cognitive Loads on Walking Navigation: A Preliminary Study," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    15. Johannes Burge & Priyank Jaini, 2017. "Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-32, February.
    16. Yingjie Lai & Chaemoon Yoo & Xiaomin Zhou & Younghwan Pan, 2023. "Elements of Food Service Design for Low-Carbon Tourism-Based on Dine-In Tourist Behavior and Attitudes in China," Sustainability, MDPI, vol. 15(9), pages 1-21, May.
    17. Florent Meyniel & Maxime Maheu & Stanislas Dehaene, 2016. "Human Inferences about Sequences: A Minimal Transition Probability Model," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
    18. Brocas, Isabelle & Carrillo, Juan D., 2012. "From perception to action: An economic model of brain processes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 81-103.
    19. Jean-François Patri & Pascal Perrier & Jean-Luc Schwartz & Julien Diard, 2018. "What drives the perceptual change resulting from speech motor adaptation? Evaluation of hypotheses in a Bayesian modeling framework," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-38, January.
    20. Florent Meyniel, 2020. "Brain dynamics for confidence-weighted learning," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.