IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1011748.html
   My bibliography  Save this article

Metric information in cognitive maps: Euclidean embedding of non-Euclidean environments

Author

Listed:
  • Tristan Baumann
  • Hanspeter A Mallot

Abstract

The structure of the internal representation of surrounding space, the so-called cognitive map, has long been debated. A Euclidean metric map is the most straight-forward hypothesis, but human navigation has been shown to systematically deviate from the Euclidean ground truth. Vector navigation based on non-metric models can better explain the observed behavior, but also discards useful geometric properties such as fast shortcut estimation and cue integration.Here, we propose another alternative, a Euclidean metric map that is systematically distorted to account for the observed behavior. The map is found by embedding the non-metric model, a labeled graph, into 2D Euclidean coordinates. We compared these two models using data from a human behavioral study where participants had to learn and navigate a non-Euclidean maze (i.e., with wormholes) and perform direct shortcuts between different locations. Even though the Euclidean embedding cannot correctly represent the non-Euclidean environment, both models predicted the data equally well. We argue that the embedding naturally arises from integrating the local position information into a metric framework, which makes the model more powerful and robust than the non-metric alternative. It may therefore be a better model for the human cognitive map.Author summary: How is the metric of space, i.e., knowledge about distances and angles between places, represented in the brain? Existing theories argue for either purely relational topological graphs without a metric, or consistent Euclidean maps where each place is assigned specific coordinates. The problem lies in the fact that human behavior systematically deviates from perfect metric maps, and theories need to account for these deviations.

Suggested Citation

  • Tristan Baumann & Hanspeter A Mallot, 2023. "Metric information in cognitive maps: Euclidean embedding of non-Euclidean environments," PLOS Computational Biology, Public Library of Science, vol. 19(12), pages 1-14, December.
  • Handle: RePEc:plo:pcbi00:1011748
    DOI: 10.1371/journal.pcbi.1011748
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011748
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011748&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1011748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Collett & T. S. Collett & S. Bisch & R. Wehner, 1998. "Local and global vectors in desert ant navigation," Nature, Nature, vol. 394(6690), pages 269-272, July.
    2. Indow, Tarow, 1999. "Global structure of visual space as a united entity," Mathematical Social Sciences, Elsevier, vol. 38(3), pages 377-392, November.
    3. Torkel Hafting & Marianne Fyhn & Sturla Molden & May-Britt Moser & Edvard I. Moser, 2005. "Microstructure of a spatial map in the entorhinal cortex," Nature, Nature, vol. 436(7052), pages 801-806, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Amy A Kalia & Paul R Schrater & Gordon E Legge, 2013. "Combining Path Integration and Remembered Landmarks When Navigating without Vision," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
    3. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Kyerl Park & Yoonsoo Yeo & Kisung Shin & Jeehyun Kwag, 2024. "Egocentric neural representation of geometric vertex in the retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Noga Mosheiff & Haggai Agmon & Avraham Moriel & Yoram Burak, 2017. "An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-19, June.
    6. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    7. Louis-Emmanuel Martinet & Denis Sheynikhovich & Karim Benchenane & Angelo Arleo, 2011. "Spatial Learning and Action Planning in a Prefrontal Cortical Network Model," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-21, May.
    8. Florian Raudies & Michael E Hasselmo, 2012. "Modeling Boundary Vector Cell Firing Given Optic Flow as a Cue," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-17, June.
    9. repec:plo:pcbi00:1002651 is not listed on IDEAS
    10. Avgar, Tal & Deardon, Rob & Fryxell, John M., 2013. "An empirically parameterized individual based model of animal movement, perception, and memory," Ecological Modelling, Elsevier, vol. 251(C), pages 158-172.
    11. Sabrina L. L. Maoz & Matthias Stangl & Uros Topalovic & Daniel Batista & Sonja Hiller & Zahra M. Aghajan & Barbara Knowlton & John Stern & Jean-Philippe Langevin & Itzhak Fried & Dawn Eliashiv & Nanth, 2023. "Dynamic neural representations of memory and space during human ambulatory navigation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Qiming Shao & Ligu Chen & Xiaowan Li & Miao Li & Hui Cui & Xiaoyue Li & Xinran Zhao & Yuying Shi & Qiang Sun & Kaiyue Yan & Guangfu Wang, 2024. "A non-canonical visual cortical-entorhinal pathway contributes to spatial navigation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Fabian Kessler & Julia Frankenstein & Constantin A. Rothkopf, 2024. "Human navigation strategies and their errors result from dynamic interactions of spatial uncertainties," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Alexander Thomas Keinath, 2016. "The Preferred Directions of Conjunctive Grid X Head Direction Cells in the Medial Entorhinal Cortex Are Periodically Organized," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-11, March.
    15. Toon Van de Maele & Bart Dhoedt & Tim Verbelen & Giovanni Pezzulo, 2024. "A hierarchical active inference model of spatial alternation tasks and the hippocampal-prefrontal circuit," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. repec:plo:pone00:0060599 is not listed on IDEAS
    17. Federica Sigismondi & Yangwen Xu & Mattia Silvestri & Roberto Bottini, 2024. "Altered grid-like coding in early blind people," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Netto, Vinicius M. & Brigatti, Edgardo & Meirelles, João & Ribeiro, Fabiano L. & Pace, Bruno & Cacholas, Caio & Sanches, Patricia Mara, 2018. "Cities, from information to interaction," SocArXiv jgz5d, Center for Open Science.
    19. Davide Spalla & Alessandro Treves & Charlotte N. Boccara, 2022. "Angular and linear speed cells in the parahippocampal circuits," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Roddy M Grieves, 2023. "Estimating neuronal firing density: A quantitative analysis of firing rate map algorithms," PLOS Computational Biology, Public Library of Science, vol. 19(12), pages 1-38, December.
    21. Gillian Coughlan & William Plumb & Peter Zhukovsky & Min Hane Aung & Michael Hornberger, 2023. "Vestibular contribution to path integration deficits in ‘at-genetic-risk’ for Alzheimer’s disease," PLOS ONE, Public Library of Science, vol. 18(1), pages 1-12, January.
    22. Thibault Cholvin & Marlene Bartos, 2022. "Hemisphere-specific spatial representation by hippocampal granule cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.