IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1011642.html
   My bibliography  Save this article

Parameter estimation in a whole-brain network model of epilepsy: Comparison of parallel global optimization solvers

Author

Listed:
  • David R Penas
  • Meysam Hashemi
  • Viktor K Jirsa
  • Julio R Banga

Abstract

The Virtual Epileptic Patient (VEP) refers to a computer-based representation of a patient with epilepsy that combines personalized anatomical data with dynamical models of abnormal brain activities. It is capable of generating spatio-temporal seizure patterns that resemble those recorded with invasive methods such as stereoelectro EEG data, allowing for the evaluation of clinical hypotheses before planning surgery. This study highlights the effectiveness of calibrating VEP models using a global optimization approach. The approach utilizes SaCeSS, a cooperative metaheuristic algorithm capable of parallel computation, to yield high-quality solutions without requiring excessive computational time. Through extensive benchmarking on synthetic data, our proposal successfully solved a set of different configurations of VEP models, demonstrating better scalability and superior performance against other parallel solvers. These results were further enhanced using a Bayesian optimization framework for hyperparameter tuning, with significant gains in terms of both accuracy and computational cost. Additionally, we added a scalable uncertainty quantification phase after model calibration, and used it to assess the variability in estimated parameters across different problems. Overall, this study has the potential to improve the estimation of pathological brain areas in drug-resistant epilepsy, thereby to inform the clinical decision-making process.Author summary: Motivated by the problem of parameter estimation in a set of whole-brain network models of epilepsy (of increasing complexity), this study addresses the question of choosing a robust global optimization solver that can be accelerated by exploiting parallelism in different infrastructures, from desktop workstations to supercomputers. By leveraging data-driven techniques with robust cooperative global optimization methods, we aim to achieve accurate parameter estimation with reduced reliance on prior information. This is due to the dependency of Bayesian inference on the level of information in the prior, while this approach allows us to quantify uncertainty in the absence of any prior knowledge effectively. In this work, we construct an efficient and accurate method to perform parameter estimation and uncertainty quantification for the whole-brain models, and we use it to infer the brain regional epileptogenicity from source and sensor level data. Of specific interest is the ability of our method to produce inference for high-dimensional state-space models governed by deterministic, stochastic, well-behaved, and stiff differential equations, using only partial observations and sparse encoding from system states to the observation.

Suggested Citation

  • David R Penas & Meysam Hashemi & Viktor K Jirsa & Julio R Banga, 2024. "Parameter estimation in a whole-brain network model of epilepsy: Comparison of parallel global optimization solvers," PLOS Computational Biology, Public Library of Science, vol. 20(7), pages 1-23, July.
  • Handle: RePEc:plo:pcbi00:1011642
    DOI: 10.1371/journal.pcbi.1011642
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011642
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011642&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1011642?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Abbas Sohrabpour & Zhengxiang Cai & Shuai Ye & Benjamin Brinkmann & Gregory Worrell & Bin He, 2020. "Noninvasive electromagnetic source imaging of spatiotemporally distributed epileptogenic brain sources," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    2. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    3. Miao Cao & Daniel Galvis & Simon J. Vogrin & William P. Woods & Sara Vogrin & Fan Wang & Wessel Woldman & John R. Terry & Andre Peterson & Chris Plummer & Mark J. Cook, 2022. "Virtual intracranial EEG signals reconstructed from MEG with potential for epilepsy surgery," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Bystrov, 2018. "Measuring the Natural Rates of Interest in Germany and Italy," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(4), pages 333-353, December.
    2. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
    3. Fernández-Macho, Javier, 2008. "Spectral estimation of a structural thin-plate smoothing model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 189-195, September.
    4. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    5. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    6. Tomoya Mori & Daisuke Murakami, 2025. "Sustainability of cities under declining population and decreasing distance frictions: The case of Japan," KIER Working Papers 1117, Kyoto University, Institute of Economic Research.
    7. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    8. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    9. repec:zbw:bofitp:2019_008 is not listed on IDEAS
    10. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    11. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    12. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    13. repec:spo:wpmain:info:hdl:2441/1904 is not listed on IDEAS
    14. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Estimating the term structure of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 492-504, April.
    15. Brave, Scott A. & Gascon, Charles & Kluender, William & Walstrum, Thomas, 2021. "Predicting benchmarked US state employment data in real time," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1261-1275.
    16. Blasques, F. & Francq, Christian & Laurent, Sébastien, 2024. "Autoregressive conditional betas," Journal of Econometrics, Elsevier, vol. 238(2).
    17. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    18. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    19. Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.
    20. Bowen Fu & Mengheng Li & Qazi Haque, 2025. "Exchange Rates, Uncovered Interest Parity, and Time‐Varying Fama Regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(3), pages 310-324, April.
    21. Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.
    22. Bógalo, Juan & Poncela, Pilar & Senra, Eva, 2017. "Automatic Signal Extraction for Stationary and Non-Stationary Time Series by Circulant SSA," MPRA Paper 76023, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.