IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1011156.html
   My bibliography  Save this article

Mathematical properties of optimal fluxes in cellular reaction networks at balanced growth

Author

Listed:
  • Hugo Dourado
  • Wolfram Liebermeister
  • Oliver Ebenhöh
  • Martin J Lercher

Abstract

The physiology of biological cells evolved under physical and chemical constraints, such as mass conservation across the network of biochemical reactions, nonlinear reaction kinetics, and limits on cell density. For unicellular organisms, the fitness that governs this evolution is mainly determined by the balanced cellular growth rate. We previously introduced growth balance analysis (GBA) as a general framework to model and analyze such nonlinear systems, revealing important analytical properties of optimal balanced growth states. It has been shown that at optimality, only a minimal subset of reactions can have nonzero flux. However, no general principles have been established to determine if a specific reaction is active at optimality. Here, we extend the GBA framework to study the optimality of each biochemical reaction, and we identify the mathematical conditions determining whether a reaction is active or not at optimal growth in a given environment. We reformulate the mathematical problem in terms of a minimal number of dimensionless variables and use the Karush-Kuhn-Tucker (KKT) conditions to identify fundamental principles of optimal resource allocation in GBA models of any size and complexity. Our approach helps to identify from first principles the economic values of biochemical reactions, expressed as marginal changes in cellular growth rate; these economic values can be related to the costs and benefits of proteome allocation into the reactions’ catalysts. Our formulation also generalizes the concepts of Metabolic Control Analysis to models of growing cells. We show how the extended GBA framework unifies and extends previous approaches of cellular modeling and analysis, putting forward a program to analyze cellular growth through the stationarity conditions of a Lagrangian function. GBA thereby provides a general theoretical toolbox for the study of fundamental mathematical properties of balanced cellular growth.Author summary: Mathematical models are an important tool to understand and predict the complex behavior of biological cells. This behavior is driven by nonlinear physical constraints that cannot be captured entirely in the prevalent modeling frameworks, which rely on simplified linear optimizations. The next generation of more realistic cell models will depend on an efficient mathematical formulation for the corresponding nonlinear optimization problem that facilitates the analytical study and numerical simulation of large models. Here, we present a succinct formulation for this nonlinear problem, and we derive the analytical properties of fluxes at optimal growth. We also show how these analytical properties can be understood in terms of economics and control theory, where they expose trade-offs related to the allocation of proteins.

Suggested Citation

  • Hugo Dourado & Wolfram Liebermeister & Oliver Ebenhöh & Martin J Lercher, 2023. "Mathematical properties of optimal fluxes in cellular reaction networks at balanced growth," PLOS Computational Biology, Public Library of Science, vol. 19(6), pages 1-26, June.
  • Handle: RePEc:plo:pcbi00:1011156
    DOI: 10.1371/journal.pcbi.1011156
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011156
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011156&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1011156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erez Dekel & Uri Alon, 2005. "Optimality and evolutionary tuning of the expression level of a protein," Nature, Nature, vol. 436(7050), pages 588-592, July.
    2. Xiao-Pan Hu & Hugo Dourado & Peter Schubert & Martin J. Lercher, 2020. "The protein translation machinery is expressed for maximal efficiency in Escherichia coli," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zihan Wang & Akshit Goyal & Veronika Dubinkina & Ashish B. George & Tong Wang & Yulia Fridman & Sergei Maslov, 2021. "Complementary resource preferences spontaneously emerge in diauxic microbial communities," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    3. Yuping Chen & Jo-Hsi Huang & Connie Phong & James E. Ferrell, 2024. "Viscosity-dependent control of protein synthesis and degradation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. David A Sivak & Matt Thomson, 2014. "Environmental Statistics and Optimal Regulation," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-12, September.
    5. Ruoyu Luo & Lin Ye & Chenyang Tao & Kankan Wang, 2013. "Simulation of E. coli Gene Regulation including Overlapping Cell Cycles, Growth, Division, Time Delays and Noise," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
    6. Rok Grah & Tamar Friedlander, 2020. "The relation between crosstalk and gene regulation form revisited," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-24, February.
    7. Alessandro Romanel & Lars Juhl Jensen & Luca Cardelli & Attila Csikász-Nagy, 2012. "Transcriptional Regulation Is a Major Controller of Cell Cycle Transition Dynamics," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-9, January.
    8. de Oliveira, Viviane M. & Amado, André & Campos, Paulo R.A., 2018. "The interplay of tradeoffs within the framework of a resource-based modelling," Ecological Modelling, Elsevier, vol. 384(C), pages 249-260.
    9. Thuy N. Nguyen & Christine Ingle & Samuel Thompson & Kimberly A. Reynolds, 2024. "The genetic landscape of a metabolic interaction," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Robert Planqué & Josephus Hulshof & Bas Teusink & Johannes C Hendriks & Frank J Bruggeman, 2018. "Maintaining maximal metabolic flux by gene expression control," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-20, September.
    11. Manlu Zhu & Xiongfeng Dai, 2024. "Shaping of microbial phenotypes by trade-offs," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Liang-Yu Nieh & Frederic Y.-H. Chen & Hsin-Wei Jung & Kuan-Yu Su & Chao-Yin Tsuei & Chun-Ting Lin & Yue-Qi Lee & James C. Liao, 2024. "Evolutionary engineering of methylotrophic E. coli enables fast growth on methanol," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. William R Harcombe & Nigel F Delaney & Nicholas Leiby & Niels Klitgord & Christopher J Marx, 2013. "The Ability of Flux Balance Analysis to Predict Evolution of Central Metabolism Scales with the Initial Distance to the Optimum," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-11, June.
    14. Kazunari Kaizu & Hisao Moriya & Hiroaki Kitano, 2010. "Fragilities Caused by Dosage Imbalance in Regulation of the Budding Yeast Cell Cycle," PLOS Genetics, Public Library of Science, vol. 6(4), pages 1-12, April.
    15. Irina Lisevich & Remy Colin & Hao Yuan Yang & Bin Ni & Victor Sourjik, 2025. "Physics of swimming and its fitness cost determine strategies of bacterial investment in flagellar motility," Nature Communications, Nature, vol. 16(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.