IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008651.html
   My bibliography  Save this article

Fast and accurate influenza forecasting in the United States with Inferno

Author

Listed:
  • Dave Osthus

Abstract

Infectious disease forecasting is an emerging field and has the potential to improve public health through anticipatory resource allocation, situational awareness, and mitigation planning. By way of exploring and operationalizing disease forecasting, the U.S. Centers for Disease Control and Prevention (CDC) has hosted FluSight since the 2013/14 flu season, an annual flu forecasting challenge. Since FluSight’s onset, forecasters have developed and improved forecasting models in an effort to provide more timely, reliable, and accurate information about the likely progression of the outbreak. While improving the predictive performance of these forecasting models is often the primary objective, it is also important for a forecasting model to run quickly, facilitating further model development and improvement while providing flexibility when deployed in a real-time setting. In this vein I introduce Inferno, a fast and accurate flu forecasting model inspired by Dante, the top performing model in the 2018/19 FluSight challenge. When pseudoprospectively compared to all models that participated in FluSight 2018/19, Inferno would have placed 2nd in the national and regional challenge as well as the state challenge, behind only Dante. Inferno, however, runs in minutes and is trivially parallelizable, while Dante takes hours to run, representing a significant operational improvement with minimal impact to performance. Forecasting challenges like FluSight should continue to monitor and evaluate how they can be modified and expanded to incentivize the development of forecasting models that benefit public health.Author summary: Infectious disease forecasting, if accurate, timely, and reliable, can assist decision makers with resource allocation planning in an attempt to curb the negative impacts of an outbreak. Forecasting challenges, like the U.S. Centers for Disease Control and Prevention’s flu forecasting challenge, FluSight, provide a space for teams to develop and operationalize real-time forecasting models that benefit public health, with weekly forecasts made at the state-level, Health and Human Services region-level, and the United States. The ultimate goal of these models is to produce accurate forecasts within the constraints of the forecasting challenge. Having a forecasting model that runs quickly is also important for future scalability, model development, and operational flexibility. In this paper, I present a fast and accurate flu forecasting model, Inferno. Through retrospective comparisons with FluSight-participating models, Inferno was shown to be a leading forecasting model in the field. Inferno, however, runs in minutes not hours, as other leading forecasting models do. This reduction in runtime constitutes an advancement in flu forecasting, positioning Inferno to scale to more granular geographic units, like counties or health care providers.

Suggested Citation

  • Dave Osthus, 2022. "Fast and accurate influenza forecasting in the United States with Inferno," PLOS Computational Biology, Public Library of Science, vol. 18(1), pages 1-22, January.
  • Handle: RePEc:plo:pcbi00:1008651
    DOI: 10.1371/journal.pcbi.1008651
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008651
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008651&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Evan L Ray & Nicholas G Reich, 2018. "Prediction of infectious disease epidemics via weighted density ensembles," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-23, February.
    2. Drew A. Linzer, 2013. "Dynamic Bayesian Forecasting of Presidential Elections in the States," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 124-134, March.
    3. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    4. Michal Ben-Nun & Pete Riley & James Turtle & David P Bacon & Steven Riley, 2019. "Forecasting national and regional influenza-like illness for the USA," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sen Pei & Jeffrey Shaman, 2020. "Aggregating forecasts of multiple respiratory pathogens supports more accurate forecasting of influenza-like illness," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-19, October.
    2. Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    3. Ray, Evan L. & Brooks, Logan C. & Bien, Jacob & Biggerstaff, Matthew & Bosse, Nikos I. & Bracher, Johannes & Cramer, Estee Y. & Funk, Sebastian & Gerding, Aaron & Johansson, Michael A. & Rumack, Aaron, 2023. "Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1366-1383.
    4. Nicholas G Reich & Craig J McGowan & Teresa K Yamana & Abhinav Tushar & Evan L Ray & Dave Osthus & Sasikiran Kandula & Logan C Brooks & Willow Crawford-Crudell & Graham Casey Gibson & Evan Moore & Reb, 2019. "Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-19, November.
    5. Eva Regnier, 2018. "Probability Forecasts Made at Multiple Lead Times," Management Science, INFORMS, vol. 64(5), pages 2407-2426, May.
    6. Arthur Novaes de Amorim & Rob Deardon & Vineet Saini, 2021. "A stacked ensemble method for forecasting influenza-like illness visit volumes at emergency departments," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-15, March.
    7. Montgomery, Jacob M. & Hollenbach, Florian M. & Ward, Michael D., 2015. "Calibrating ensemble forecasting models with sparse data in the social sciences," International Journal of Forecasting, Elsevier, vol. 31(3), pages 930-942.
    8. Saeed Hayati & Kenji Fukumizu & Afshin Parvardeh, 2024. "Kernel mean embedding of probability measures and its applications to functional data analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 447-484, June.
    9. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    10. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    11. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    12. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    13. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    14. Basora, Luis & Viens, Arthur & Chao, Manuel Arias & Olive, Xavier, 2025. "A benchmark on uncertainty quantification for deep learning prognostics," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    15. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    16. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    17. Armantier, Olivier & Treich, Nicolas, 2013. "Eliciting beliefs: Proper scoring rules, incentives, stakes and hedging," European Economic Review, Elsevier, vol. 62(C), pages 17-40.
    18. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    19. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.
    20. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.