IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008651.html
   My bibliography  Save this article

Fast and accurate influenza forecasting in the United States with Inferno

Author

Listed:
  • Dave Osthus

Abstract

Infectious disease forecasting is an emerging field and has the potential to improve public health through anticipatory resource allocation, situational awareness, and mitigation planning. By way of exploring and operationalizing disease forecasting, the U.S. Centers for Disease Control and Prevention (CDC) has hosted FluSight since the 2013/14 flu season, an annual flu forecasting challenge. Since FluSight’s onset, forecasters have developed and improved forecasting models in an effort to provide more timely, reliable, and accurate information about the likely progression of the outbreak. While improving the predictive performance of these forecasting models is often the primary objective, it is also important for a forecasting model to run quickly, facilitating further model development and improvement while providing flexibility when deployed in a real-time setting. In this vein I introduce Inferno, a fast and accurate flu forecasting model inspired by Dante, the top performing model in the 2018/19 FluSight challenge. When pseudoprospectively compared to all models that participated in FluSight 2018/19, Inferno would have placed 2nd in the national and regional challenge as well as the state challenge, behind only Dante. Inferno, however, runs in minutes and is trivially parallelizable, while Dante takes hours to run, representing a significant operational improvement with minimal impact to performance. Forecasting challenges like FluSight should continue to monitor and evaluate how they can be modified and expanded to incentivize the development of forecasting models that benefit public health.Author summary: Infectious disease forecasting, if accurate, timely, and reliable, can assist decision makers with resource allocation planning in an attempt to curb the negative impacts of an outbreak. Forecasting challenges, like the U.S. Centers for Disease Control and Prevention’s flu forecasting challenge, FluSight, provide a space for teams to develop and operationalize real-time forecasting models that benefit public health, with weekly forecasts made at the state-level, Health and Human Services region-level, and the United States. The ultimate goal of these models is to produce accurate forecasts within the constraints of the forecasting challenge. Having a forecasting model that runs quickly is also important for future scalability, model development, and operational flexibility. In this paper, I present a fast and accurate flu forecasting model, Inferno. Through retrospective comparisons with FluSight-participating models, Inferno was shown to be a leading forecasting model in the field. Inferno, however, runs in minutes not hours, as other leading forecasting models do. This reduction in runtime constitutes an advancement in flu forecasting, positioning Inferno to scale to more granular geographic units, like counties or health care providers.

Suggested Citation

  • Dave Osthus, 2022. "Fast and accurate influenza forecasting in the United States with Inferno," PLOS Computational Biology, Public Library of Science, vol. 18(1), pages 1-22, January.
  • Handle: RePEc:plo:pcbi00:1008651
    DOI: 10.1371/journal.pcbi.1008651
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008651
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008651&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.