IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007260.html
   My bibliography  Save this article

Arrhythmia mechanisms and spontaneous calcium release: Bi-directional coupling between re-entrant and focal excitation

Author

Listed:
  • Michael A Colman

Abstract

Spontaneous sub-cellular calcium release events (SCRE) are conjectured to promote rapid arrhythmias associated with conditions such as heart failure and atrial fibrillation: they can underlie the emergence of spontaneous action potentials in single cells which can lead to arrhythmogenic triggers in tissue. The multi-scale mechanisms of the development of SCRE into arrhythmia triggers, and their dynamic interaction with the tissue substrate, remain elusive; rigorous and simultaneous study of dynamics from the nanometre to the centimetre scale is a major challenge. The aim of this study was to develop a computational approach to overcome this challenge and study potential bi-directional coupling between sub-cellular and tissue-scale arrhythmia phenomena. A framework comprising a hierarchy of computational models was developed, which includes detailed single-cell models describing spatio-temporal calcium dynamics in 3D, efficient non-spatial cell models, and both idealised and realistic tissue models. A phenomenological approach was implemented to reproduce SCRE morphology and variability in the efficient cell models, comprising the definition of analytical Spontaneous Release Functions (SRF) whose parameters may be randomly sampled from appropriate distributions in order to match either the 3D cell models or experimental data. Pro-arrhythmogenic pacing protocols were applied to initiate re-entry and promote calcium overload, leading to the emergence of SCRE. The SRF accurately reproduced the dynamics of SCRE and its dependence on environment variables under multiple different conditions. Sustained re-entrant excitation promoted calcium overload, and led to the emergence of focal excitations after termination. A purely functional mechanism of re-entry and focal activity localisation was demonstrated, related to the unexcited spiral wave core. In conclusion, a novel approach has been developed to dynamically model SCRE at the tissue scale, which facilitates novel, detailed multi-scale mechanistic analysis. It was revealed that complex re-entrant excitation patterns and SCRE may be bi-directionally coupled, promoting novel mechanisms of arrhythmia perpetuation.Author summary: A loss of the regular rhythm of the beating heart, called arrhythmia, can inhibit its pumping function and even lead to sudden death. Understanding the processes by which normal rhythm is interrupted presents a major yet critical research problem. One challenge is the inherent multi-scale dependence of the electrical activity of the heart: behaviour at the microscopic scales (single proteins) can propagate to the macroscopic (whole-heart). Simultaneously studying phenomena at both of these scales is difficult, if not impossible, to perform experimentally. Developing mathematical models of the heart in order to perform variable and controlled simulations of its electrical activity provides the possibility to undertake such multi-scale analysis. However, new approaches are required to simulate the potential role of “spontaneous calcium release”, which occurs at the sub-cellular scale, in triggering arrhythmia events at the whole-heart scale. This study develops an approach to perform such simulations and applies it to study the long-term interactions of these sub-cellular triggers with the complex electrical activity of the most dangerous arrhythmias–tachycardia and fibrillation. The new mechanistic insight has implications for both diagnosis and treatment of the associated disorders.

Suggested Citation

  • Michael A Colman, 2019. "Arrhythmia mechanisms and spontaneous calcium release: Bi-directional coupling between re-entrant and focal excitation," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-34, August.
  • Handle: RePEc:plo:pcbi00:1007260
    DOI: 10.1371/journal.pcbi.1007260
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007260
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007260&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stanley Nattel, 2002. "New ideas about atrial fibrillation 50 years on," Nature, Nature, vol. 415(6868), pages 219-226, January.
    2. Michael A Colman & Christian Pinali & Andrew W Trafford & Henggui Zhang & Ashraf Kitmitto, 2017. "A computational model of spatio-temporal cardiac intracellular calcium handling with realistic structure and spatial flux distribution from sarcoplasmic reticulum and t-tubule reconstructions," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-34, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marina Riabiz & Wilson Ye Chen & Jon Cockayne & Pawel Swietach & Steven A. Niederer & Lester Mackey & Chris. J. Oates, 2022. "Optimal thinning of MCMC output," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1059-1081, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel M Lombardo & Flavio H Fenton & Sanjiv M Narayan & Wouter-Jan Rappel, 2016. "Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-15, August.
    2. Eberhard P Scholz & Paola Carrillo-Bustamante & Fathima Fischer & Mathias Wilhelms & Edgar Zitron & Olaf Dössel & Hugo A Katus & Gunnar Seemann, 2013. "Rotor Termination Is Critically Dependent on Kinetic Properties of IKur Inhibitors in an In Silico Model of Chronic Atrial Fibrillation," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-11, December.
    3. Cui, Xingran & Chang, Hung-Chi & Lin, Lian-Yu & Yu, Chih-Chieh & Hsieh, Wan-Hsin & Li, Weihui & Peng, Chung-Kang & Lin, Jiunn-Lee & Lo, Men-Tzung, 2019. "Prediction of atrial fibrillation recurrence before catheter ablation using an adaptive nonlinear and non-stationary surface ECG analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 9-19.
    4. Narin, Ali & Isler, Yalcin & Ozer, Mahmut & Perc, Matjaž, 2018. "Early prediction of paroxysmal atrial fibrillation based on short-term heart rate variability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 56-65.
    5. Feng Ou & Nini Rao & Xudong Jiang & Mengyao Qian & Wei Feng & Lixue Yin & Xu Chen, 2013. "Analysis on Differential Gene Expression Data for Prediction of New Biological Features in Permanent Atrial Fibrillation," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-8, October.
    6. Yan-yan Li & Chuan-wei Zhou & Jian Xu & Yun Qian & Bei Wang, 2012. "CYP11B2 T-344C Gene Polymorphism and Atrial Fibrillation: A Meta-Analysis of 2,758 Subjects," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.