IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006501.html
   My bibliography  Save this article

Conventional analysis of trial-by-trial adaptation is biased: Empirical and theoretical support using a Bayesian estimator

Author

Listed:
  • Daniel Blustein
  • Ahmed Shehata
  • Kevin Englehart
  • Jonathon Sensinger

Abstract

Research on human motor adaptation has often focused on how people adapt to self-generated or externally-influenced errors. Trial-by-trial adaptation is a person’s response to self-generated errors. Externally-influenced errors applied as catch-trial perturbations are used to calculate a person’s perturbation adaptation rate. Although these adaptation rates are sometimes compared to one another, we show through simulation and empirical data that the two metrics are distinct. We demonstrate that the trial-by-trial adaptation rate, often calculated as a coefficient in a linear regression, is biased under typical conditions. We tested 12 able-bodied subjects moving a cursor on a screen using a computer mouse. Statistically different adaptation rates arise when sub-sets of trials from different phases of learning are analyzed from within a sequence of movement results. We propose a new approach to identify when a person’s learning has stabilized in order to identify steady-state movement trials from which to calculate a more reliable trial-by-trial adaptation rate. Using a Bayesian model of human movement, we show that this analysis approach is more consistent and provides a more confident estimate than alternative approaches. Constraining analyses to steady-state conditions will allow researchers to better decouple the multiple concurrent learning processes that occur while a person makes goal-directed movements. Streamlining this analysis may help broaden the impact of motor adaptation studies, perhaps even enhancing their clinical usefulness.Author summary: By observing the learning rate of a person making a movement under new conditions, researchers can better understand how the nervous system handles uncertainty. Patients suffering from motor deficits or using prostheses will often display different motor abilities that can be observed as changes in error correction rates. Here we show that previous approaches to determining error correction rates are affected by the overall learning rate within the subset of trials selected for analysis. We use real-world data collected from people controlling a computer cursor and simulations of how a person’s nervous system operates to show the limitations of current approaches. We also present a new approach to limit some of the biases with current motor analysis techniques.

Suggested Citation

  • Daniel Blustein & Ahmed Shehata & Kevin Englehart & Jonathon Sensinger, 2018. "Conventional analysis of trial-by-trial adaptation is biased: Empirical and theoretical support using a Bayesian estimator," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-15, December.
  • Handle: RePEc:plo:pcbi00:1006501
    DOI: 10.1371/journal.pcbi.1006501
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006501
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006501&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reva E Johnson & Konrad P Kording & Levi J Hargrove & Jonathon W Sensinger, 2017. "Adaptation to random and systematic errors: Comparison of amputee and non-amputee control interfaces with varying levels of process noise," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-19, March.
    2. Robert J van Beers & Yor van der Meer & Richard M Veerman, 2013. "What Autocorrelation Tells Us about Motor Variability: Insights from Dart Throwing," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.
    3. Robert J van Beers, 2012. "How Does Our Motor System Determine Its Learning Rate?," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-17, November.
    4. Kang He & You Liang & Farnaz Abdollahi & Moria Fisher Bittmann & Konrad Kording & Kunlin Wei, 2016. "The Statistical Determinants of the Speed of Motor Learning," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-20, September.
    5. Kurt A. Thoroughman & Reza Shadmehr, 2000. "Learning of action through adaptive combination of motor primitives," Nature, Nature, vol. 407(6805), pages 742-747, October.
    6. Konrad P. Körding & Daniel M. Wolpert, 2004. "Bayesian integration in sensorimotor learning," Nature, Nature, vol. 427(6971), pages 244-247, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua G A Cashaback & Christopher K Lao & Dimitrios J Palidis & Susan K Coltman & Heather R McGregor & Paul L Gribble, 2019. "The gradient of the reinforcement landscape influences sensorimotor learning," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-27, March.
    2. Luis Nicolas Gonzalez Castro & Craig Bryant Monsen & Maurice A Smith, 2011. "The Binding of Learning to Action in Motor Adaptation," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-14, June.
    3. Frédéric Crevecoeur & Stephen H Scott, 2013. "Priors Engaged in Long-Latency Responses to Mechanical Perturbations Suggest a Rapid Update in State Estimation," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-14, August.
    4. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    5. Loreen Hertäg & Katharina A. Wilmes & Claudia Clopath, 2025. "Uncertainty estimation with prediction-error circuits," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    6. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. repec:plo:pone00:0037900 is not listed on IDEAS
    8. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    9. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Brocas, Isabelle & Carrillo, Juan D., 2012. "From perception to action: An economic model of brain processes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 81-103.
    11. Jennifer Laura Lee & Wei Ji Ma, 2021. "Point-estimating observer models for latent cause detection," PLOS Computational Biology, Public Library of Science, vol. 17(10), pages 1-29, October.
    12. Alkis M Hadjiosif & J Ryan Morehead & Maurice A Smith, 2023. "A double dissociation between savings and long-term memory in motor learning," PLOS Biology, Public Library of Science, vol. 21(4), pages 1-32, April.
    13. Vassilios N Christopoulos & Paul R Schrater, 2009. "Grasping Objects with Environmentally Induced Position Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-11, October.
    14. Nicoletti, Giuseppe & von Rueden, Christina & Andrews, Dan, 2020. "Digital technology diffusion: A matter of capabilities, incentives or both?," European Economic Review, Elsevier, vol. 128(C).
    15. Christopher L Hewitson & David M Kaplan & Matthew J Crossley, 2023. "Error-independent effect of sensory uncertainty on motor learning when both feedforward and feedback control processes are engaged," PLOS Computational Biology, Public Library of Science, vol. 19(9), pages 1-45, September.
    16. Guido Marco Cicchini & Giovanni D’Errico & David Charles Burr, 2022. "Crowding results from optimal integration of visual targets with contextual information," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Alice Soldà & Changxia Ke & Lionel Page & William von Hippel, 2020. "Strategically delusional," Experimental Economics, Springer;Economic Science Association, vol. 23(3), pages 604-631, September.
    18. Daniel Bjasch & Christopher J Bockisch & Dominik Straumann & Alexander A Tarnutzer, 2012. "Differential Effects of Visual Feedback on Subjective Visual Vertical Accuracy and Precision," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    19. repec:plo:pbio00:0040179 is not listed on IDEAS
    20. Philipp Schustek & Rubén Moreno-Bote, 2018. "Instance-based generalization for human judgments about uncertainty," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-27, June.
    21. Barbara Feulner & Matthew G. Perich & Raeed H. Chowdhury & Lee E. Miller & Juan A. Gallego & Claudia Clopath, 2022. "Small, correlated changes in synaptic connectivity may facilitate rapid motor learning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    22. Lukas K. Amann & Virginia Casasnovas & Alexander Gail, 2025. "Visual target and task-critical feedback uncertainty impair different stages of reach planning in motor cortex," Nature Communications, Nature, vol. 16(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.