IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005747.html
   My bibliography  Save this article

Exploiting ecology in drug pulse sequences in favour of population reduction

Author

Listed:
  • Marianne Bauer
  • Isabella R Graf
  • Vudtiwat Ngampruetikorn
  • Greg J Stephens
  • Erwin Frey

Abstract

A deterministic population dynamics model involving birth and death for a two-species system, comprising a wild-type and more resistant species competing via logistic growth, is subjected to two distinct stress environments designed to mimic those that would typically be induced by temporal variation in the concentration of a drug (antibiotic or chemotherapeutic) as it permeates through the population and is progressively degraded. Different treatment regimes, involving single or periodical doses, are evaluated in terms of the minimal population size (a measure of the extinction probability), and the population composition (a measure of the selection pressure for resistance or tolerance during the treatment). We show that there exist timescales over which the low-stress regime is as effective as the high-stress regime, due to the competition between the two species. For multiple periodic treatments, competition can ensure that the minimal population size is attained during the first pulse when the high-stress regime is short, which implies that a single short pulse can be more effective than a more protracted regime. Our results suggest that when the duration of the high-stress environment is restricted, a treatment with one or multiple shorter pulses can produce better outcomes than a single long treatment. If ecological competition is to be exploited for treatments, it is crucial to determine these timescales, and estimate for the minimal population threshold that suffices for extinction. These parameters can be quantified by experiment.Author summary: The possibilities of lower antibiotic dosages and treatment times, as demanded by antibiotic stewardship programmes have been investigated with complex mathematical models to account for, for example, the presence of an immune host. At the same time, microbial experiments are getting better at mimicking real setups, such as those where the drug gradually permeates in and out of the region with the infectious population. Our work systematically discusses an extremely simple and thus conceptually easy model for an infectious two species system (one wild-type and one more resistant population), interacting via logistic growth, subject to low and high stress environments. In this model, well-defined timescales exist during which the low stress environment is as efficient in reducing the population as the high stress environment. We explain which temporal patterns of low and high stress, corresponding to sequences of drug treatments, lead to the best population reduction for a variety of durations of high stress within a constant long low stress environment. The complexity of the spectrum of best treatments merits further experimental investigation, which could help clarify the relevant timescales. This could then give useful feedback towards the more complex models of the medical community.

Suggested Citation

  • Marianne Bauer & Isabella R Graf & Vudtiwat Ngampruetikorn & Greg J Stephens & Erwin Frey, 2017. "Exploiting ecology in drug pulse sequences in favour of population reduction," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-17, September.
  • Handle: RePEc:plo:pcbi00:1005747
    DOI: 10.1371/journal.pcbi.1005747
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005747
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005747&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Remy Chait & Allison Craney & Roy Kishony, 2007. "Antibiotic interactions that select against resistance," Nature, Nature, vol. 446(7136), pages 668-671, April.
    2. Ofer Fridman & Amir Goldberg & Irine Ronin & Noam Shoresh & Nathalie Q. Balaban, 2014. "Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations," Nature, Nature, vol. 513(7518), pages 418-421, September.
    3. Troy Day & Andrew F Read, 2016. "Does High-Dose Antimicrobial Chemotherapy Prevent the Evolution of Resistance?," PLOS Computational Biology, Public Library of Science, vol. 12(1), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elsa Hansen & Jason Karslake & Robert J Woods & Andrew F Read & Kevin B Wood, 2020. "Antibiotics can be used to contain drug-resistant bacteria by maintaining sufficiently large sensitive populations," PLOS Biology, Public Library of Science, vol. 18(5), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsa Hansen & Jason Karslake & Robert J Woods & Andrew F Read & Kevin B Wood, 2020. "Antibiotics can be used to contain drug-resistant bacteria by maintaining sufficiently large sensitive populations," PLOS Biology, Public Library of Science, vol. 18(5), pages 1-20, May.
    2. Greenspoon, Philip B. & Mideo, Nicole, 2017. "Evolutionary rescue of a parasite population by mutation rate evolution," Theoretical Population Biology, Elsevier, vol. 117(C), pages 64-75.
    3. Joseph Peter Torella & Remy Chait & Roy Kishony, 2010. "Optimal Drug Synergy in Antimicrobial Treatments," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-9, June.
    4. Philip Gerlee & Linnéa Schmidt & Naser Monsefi & Teresia Kling & Rebecka Jörnsten & Sven Nelander, 2013. "Searching for Synergies: Matrix Algebraic Approaches for Efficient Pair Screening," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
    5. Sourav Chowdhury & Daniel C. Zielinski & Christopher Dalldorf & Joao V. Rodrigues & Bernhard O. Palsson & Eugene I. Shakhnovich, 2023. "Empowering drug off-target discovery with metabolic and structural analysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Alexander Sturm & Grzegorz Jóźwiak & Marta Pla Verge & Laura Munch & Gino Cathomen & Anthony Vocat & Amanda Luraschi-Eggemann & Clara Orlando & Katja Fromm & Eric Delarze & Michał Świątkowski & Grzego, 2024. "Accurate and rapid antibiotic susceptibility testing using a machine learning-assisted nanomotion technology platform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Jessica A Lee & Siavash Riazi & Shahla Nemati & Jannell V Bazurto & Andreas E Vasdekis & Benjamin J Ridenhour & Christopher H Remien & Christopher J Marx, 2019. "Microbial phenotypic heterogeneity in response to a metabolic toxin: Continuous, dynamically shifting distribution of formaldehyde tolerance in Methylobacterium extorquens populations," PLOS Genetics, Public Library of Science, vol. 15(11), pages 1-38, November.
    8. Jason Karslake & Jeff Maltas & Peter Brumm & Kevin B Wood, 2016. "Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-21, October.
    9. Chih-Wei Chen & Nadja Leimer & Egor A. Syroegin & Clémence Dunand & Zackery P. Bulman & Kim Lewis & Yury S. Polikanov & Maxim S. Svetlov, 2023. "Structural insights into the mechanism of overcoming Erm-mediated resistance by macrolides acting together with hygromycin-A," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Daniel Nichol & Peter Jeavons & Alexander G Fletcher & Robert A Bonomo & Philip K Maini & Jerome L Paul & Robert A Gatenby & Alexander RA Anderson & Jacob G Scott, 2015. "Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-19, September.
    11. Jeff Maltas & Kevin B Wood, 2019. "Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance," PLOS Biology, Public Library of Science, vol. 17(10), pages 1-34, October.
    12. Niclas Nordholt & Orestis Kanaris & Selina B. I. Schmidt & Frank Schreiber, 2021. "Persistence against benzalkonium chloride promotes rapid evolution of tolerance during periodic disinfection," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    13. Eva Stadler & Mohamed Maiga & Lukas Friedrich & Vandana Thathy & Claudia Demarta-Gatsi & Antoine Dara & Fanta Sogore & Josefine Striepen & Claude Oeuvray & Abdoulaye A. Djimdé & Marcus C. S. Lee & Lau, 2023. "Propensity of selecting mutant parasites for the antimalarial drug cabamiquine," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Roger Guimerà & Marta Sales-Pardo, 2013. "A Network Inference Method for Large-Scale Unsupervised Identification of Novel Drug-Drug Interactions," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-9, December.
    15. Jiekai Sun & Xu Wang & Ye Gao & Shuangyu Li & Ziwei Hu & Yan Huang & Baoqiang Fan & Xia Wang & Miao Liu & Chunhua Qiao & Wei Zhang & Yipeng Wang & Xingyue Ji, 2024. "H2S scavenger as a broad-spectrum strategy to deplete bacteria-derived H2S for antibacterial sensitization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. José Camacho Mateu & Matteo Sireci & Miguel A Muñoz, 2021. "Phenotypic-dependent variability and the emergence of tolerance in bacterial populations," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-28, September.
    17. Elwood A. Mullins & Jonathan Dorival & Gong-Li Tang & Dale L. Boger & Brandt F. Eichman, 2021. "Structural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    18. Erica J. Zheng & Ian W. Andrews & Alexandra T. Grote & Abigail L. Manson & Miguel A. Alcantar & Ashlee M. Earl & James J. Collins, 2022. "Modulating the evolutionary trajectory of tolerance using antibiotics with different metabolic dependencies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Horvath, Denis & Brutovsky, Branislav, 2016. "Etiology of phenotype switching strategy in time varying stochastic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 455-468.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.