IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004706.html
   My bibliography  Save this article

What Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeast

Author

Listed:
  • Artémis Llamosi
  • Andres M Gonzalez-Vargas
  • Cristian Versari
  • Eugenio Cinquemani
  • Giancarlo Ferrari-Trecate
  • Pascal Hersen
  • Gregory Batt

Abstract

Significant cell-to-cell heterogeneity is ubiquitously observed in isogenic cell populations. Consequently, parameters of models of intracellular processes, usually fitted to population-averaged data, should rather be fitted to individual cells to obtain a population of models of similar but non-identical individuals. Here, we propose a quantitative modeling framework that attributes specific parameter values to single cells for a standard model of gene expression. We combine high quality single-cell measurements of the response of yeast cells to repeated hyperosmotic shocks and state-of-the-art statistical inference approaches for mixed-effects models to infer multidimensional parameter distributions describing the population, and then derive specific parameters for individual cells. The analysis of single-cell parameters shows that single-cell identity (e.g. gene expression dynamics, cell size, growth rate, mother-daughter relationships) is, at least partially, captured by the parameter values of gene expression models (e.g. rates of transcription, translation and degradation). Our approach shows how to use the rich information contained into longitudinal single-cell data to infer parameters that can faithfully represent single-cell identity.Author Summary: Because of non-genetic variability, cells in an isogenic population respond differently to a same stimulation. Therefore, the mean behavior of a cell population does not generally correspond to the behavior of the mean cell, and more generally, neglecting cell-to-cell differences biases our quantitative representation and understanding of the functioning of cellular systems. Here we introduce a statistical inference approach allowing for the calibration of (a population of) single cell models, differing by their parameter values. It enables to view time-lapse microscopy data as many experiments performed on one cell rather than one experiment performed on many cells. By harnessing existing cell-to-cell differences, one can then learn how environmental cues affect (non-observed) intracellular processes. Our approach is generic and enables to exploit in unprecedented manner the high informative content of single-cell longitudinal data.

Suggested Citation

  • Artémis Llamosi & Andres M Gonzalez-Vargas & Cristian Versari & Eugenio Cinquemani & Giancarlo Ferrari-Trecate & Pascal Hersen & Gregory Batt, 2016. "What Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeast," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-18, February.
  • Handle: RePEc:plo:pcbi00:1004706
    DOI: 10.1371/journal.pcbi.1004706
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004706
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004706&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004706?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David G. Spiller & Christopher D. Wood & David A. Rand & Michael R. H. White, 2010. "Measurement of single-cell dynamics," Nature, Nature, vol. 465(7299), pages 736-745, June.
    2. Sabrina L. Spencer & Suzanne Gaudet & John G. Albeck & John M. Burke & Peter K. Sorger, 2009. "Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis," Nature, Nature, vol. 459(7245), pages 428-432, May.
    3. Bonassi Fernando V. & You Lingchong & West Mike, 2011. "Bayesian Learning from Marginal Data in Bionetwork Models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-27, October.
    4. Jan Hasenauer & Christine Hasenauer & Tim Hucho & Fabian J Theis, 2014. "ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-17, July.
    5. Filippo Menolascina & Gianfranco Fiore & Emanuele Orabona & Luca De Stefano & Mike Ferry & Jeff Hasty & Mario di Bernardo & Diego di Bernardo, 2014. "In-Vivo Real-Time Control of Protein Expression from Endogenous and Synthetic Gene Networks," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-14, May.
    6. Joachim Almquist & Loubna Bendrioua & Caroline Beck Adiels & Mattias Goksör & Stefan Hohmann & Mats Jirstrand, 2015. "A Nonlinear Mixed Effects Approach for Modeling the Cell-To-Cell Variability of Mig1 Dynamics in Yeast," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-32, April.
    7. Alejandro Colman-Lerner & Andrew Gordon & Eduard Serra & Tina Chin & Orna Resnekov & Drew Endy & C. Gustavo Pesce & Roger Brent, 2005. "Regulated cell-to-cell variation in a cell-fate decision system," Nature, Nature, vol. 437(7059), pages 699-706, September.
    8. Kuhn, E. & Lavielle, M., 2005. "Maximum likelihood estimation in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1020-1038, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.
    2. Ibirénoyé Romaric Sodjahin & Fabienne Femenia & Obafemi Philippe Koutchade & A. Carpentier, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data [Valeur économique des effets agronomiques de la diversification de," Working Papers hal-03639951, HAL.
    3. Wang, Xiaoning & Schumitzky, Alan & D'Argenio, David Z., 2007. "Nonlinear random effects mixture models: Maximum likelihood estimation via the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6614-6623, August.
    4. Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2013. "Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model," Ecological Modelling, Elsevier, vol. 263(C), pages 56-63.
    5. Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.
    6. Allassonnière, Stéphanie & Kuhn, Estelle, 2015. "Convergent stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 4-19.
    7. Sodjahin, Romaric & Carpentier, Alain & Koutchade, Obafèmi Philippe & Femenia, Fabienne, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: Estimation based on farm cost accounting data," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322295, Agricultural and Applied Economics Association.
    8. Jan Hasenauer & Christine Hasenauer & Tim Hucho & Fabian J Theis, 2014. "ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-17, July.
    9. Laura Azzimonti & Francesca Ieva & Anna Maria Paganoni, 2013. "Nonlinear nonparametric mixed-effects models for unsupervised classification," Computational Statistics, Springer, vol. 28(4), pages 1549-1570, August.
    10. Marc Lavielle & Adeline Samson & Ana Karina Fermin & France Mentré, 2011. "Maximum Likelihood Estimation of Long-Term HIV Dynamic Models and Antiviral Response," Biometrics, The International Biometric Society, vol. 67(1), pages 250-259, March.
    11. Samson, Adeline & Lavielle, Marc & Mentre, France, 2006. "Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: Application to HIV dynamics model," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1562-1574, December.
    12. Sébastien Benzekry & Clare Lamont & Afshin Beheshti & Amanda Tracz & John M L Ebos & Lynn Hlatky & Philip Hahnfeldt, 2014. "Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-19, August.
    13. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    14. Andreas Doncic & Umut Eser & Oguzhan Atay & Jan M Skotheim, 2013. "An Algorithm to Automate Yeast Segmentation and Tracking," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-11, March.
    15. Burton W Andrews & Pablo A Iglesias, 2007. "An Information-Theoretic Characterization of the Optimal Gradient Sensing Response of Cells," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-9, August.
    16. Michael Chevalier & Ophelia Venturelli & Hana El-Samad, 2015. "The Impact of Different Sources of Fluctuations on Mutual Information in Biochemical Networks," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-21, October.
    17. Trevezas, S. & Malefaki, S. & Cournède, P.-H., 2014. "Parameter estimation via stochastic variants of the ECM algorithm with applications to plant growth modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 82-99.
    18. Ollier, Edouard & Samson, Adeline & Delavenne, Xavier & Viallon, Vivian, 2016. "A SAEM algorithm for fused lasso penalized NonLinear Mixed Effect Models: Application to group comparison in pharmacokinetics," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 207-221.
    19. Szymon Stoma & Alexandre Donzé & François Bertaux & Oded Maler & Gregory Batt, 2013. "STL-based Analysis of TRAIL-induced Apoptosis Challenges the Notion of Type I/Type II Cell Line Classification," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-14, May.
    20. Boubacar Mainassara, Y. & Carbon, M. & Francq, C., 2012. "Computing and estimating information matrices of weak ARMA models," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 345-361.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.