Author
Listed:
- Xiaolu Guo
(University of California Los Angeles
University of California Los Angeles)
- Adewunmi Adelaja
(University of California Los Angeles
University of California Los Angeles
Harvard Combined Dermatology Residency Training Program)
- Apeksha Singh
(University of California Los Angeles
University of California Los Angeles)
- Roy Wollman
(University of California Los Angeles
University of California Los Angeles)
- Alexander Hoffmann
(University of California Los Angeles
University of California Los Angeles)
Abstract
Macrophages initiate pathogen-appropriate immune responses with the activation dynamics of transcription factor NFκB mediating specificity. Live-cell imaging revealed the stimulus-response specificity of NFκB dynamics among populations of heterogeneous cells. To study stimulus-response specificity beyond what is experimentally accessible, we develop mathematical model simulations that capture the heterogeneity of stimulus-responsive NFκB dynamics and the stimulus-response specificity performance of the population. Complementing experimental data, extended-dose response simulations improved channel capacity estimates. By collapsing parameter distributions, we locate information loss to receptor modules, while the negative-feedback-containing core module shows remarkable signaling fidelity. Further, constructing virtual single-cell networks reveals the stimulus-response specificity of single cells. We find that despite stimulus-response specificity limitations at the population level, the majority of single cells are capable of responding specifically to immune threats, and that the few instances of stimulus-pair confusion are highly uncorrelated. The diversity of blindspots enable small consortia of macrophages to achieve perfect stimulus distinction.
Suggested Citation
Xiaolu Guo & Adewunmi Adelaja & Apeksha Singh & Roy Wollman & Alexander Hoffmann, 2025.
"Modeling heterogeneous signaling dynamics of macrophages reveals principles of information transmission in stimulus responses,"
Nature Communications, Nature, vol. 16(1), pages 1-17, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60901-3
DOI: 10.1038/s41467-025-60901-3
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60901-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.