IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003984.html
   My bibliography  Save this article

Dissecting Dynamic Genetic Variation That Controls Temporal Gene Response in Yeast

Author

Listed:
  • Avital Brodt
  • Maya Botzman
  • Eyal David
  • Irit Gat-Viks

Abstract

Inter-individual variation in regulatory circuits controlling gene expression is a powerful source of functional information. The study of associations among genetic variants and gene expression provides important insights about cell circuitry but cannot specify whether and when potential variants dynamically alter their genetic effect during the course of response. Here we develop a computational procedure that captures temporal changes in genetic effects, and apply it to analyze transcription during inhibition of the TOR signaling pathway in segregating yeast cells. We found a high-order coordination of gene modules: sets of genes co-associated with the same genetic variant and sharing a common temporal genetic effect pattern. The temporal genetic effects of some modules represented a single state-transitioning pattern; for example, at 10–30 minutes following stimulation, genetic effects in the phosphate utilization module attained a characteristic transition to a new steady state. In contrast, another module showed an impulse pattern of genetic effects; for example, in the poor nitrogen sources utilization module, a spike up of a genetic effect at 10–20 minutes following stimulation reflected inter-individual variation in the timing (rather than magnitude) of response. Our analysis suggests that the same mechanism typically leads to both inter-individual variation and the temporal genetic effect pattern in a module. Our methodology provides a quantitative genetic approach to studying the molecular mechanisms that shape dynamic changes in transcriptional responses.Author Summary: Genetic variation is postulated to play a major role in transcriptional responses to stimulation. Such process involves two inter-related dynamic processes: first, the time-dependent changes in gene expression, and second, the time-dependent changes in genetic effects. Although the dynamics of gene expression has been extensively investigated, the dynamics of genetic effects yet remain poorly understood. Here we develop DyVER, a method that combines genotyping with time-series gene expression data to uncover the timing of transitions in the magnitude of genetic effects. We examine gene expression in yeast segregants during rapamycin response, finding several distinct ways of change in the magnitude of genetic effects over time. These include impulse-like and sustained transitions in genetic effects, acting both in cis and trans. Our findings suggest that associations of genes with the same genetic variant often occur via the same timing of state transition in genetic effects. Furthermore, the results uncover a previously unknown variant whose impulse-like temporal genetic effect suggests a novel molecular function for determining the timing rather than the magnitude of response. Our results show that steady-state association studies miss important genetic information, and demonstrate the power of DyVER to render a comprehensive map of dynamic changes in genetic effects.

Suggested Citation

  • Avital Brodt & Maya Botzman & Eyal David & Irit Gat-Viks, 2014. "Dissecting Dynamic Genetic Variation That Controls Temporal Gene Response in Yeast," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
  • Handle: RePEc:plo:pcbi00:1003984
    DOI: 10.1371/journal.pcbi.1003984
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003984
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003984&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003984?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Timothée Flutre & Xiaoquan Wen & Jonathan Pritchard & Matthew Stephens, 2013. "A Statistical Framework for Joint eQTL Analysis in Multiple Tissues," PLOS Genetics, Public Library of Science, vol. 9(5), pages 1-13, May.
    2. Denis A. Smirnov & Michael Morley & Eunice Shin & Richard S. Spielman & Vivian G. Cheung, 2009. "Genetic analysis of radiation-induced changes in human gene expression," Nature, Nature, vol. 459(7246), pages 587-591, May.
    3. Angelini Claudia & De Canditiis Daniela & Mutarelli Margherita & Pensky Marianna, 2007. "A Bayesian Approach to Estimation and Testing in Time-course Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 6(1), pages 1-33, September.
    4. Mirko Francesconi & Ben Lehner, 2014. "The effects of genetic variation on gene expression dynamics during development," Nature, Nature, vol. 505(7482), pages 208-211, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angelini, Claudia & De Canditiis, Daniela & Pensky, Marianna, 2009. "Bayesian models for two-sample time-course microarray experiments," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1547-1565, March.
    2. Xiaoquan Wen, 2017. "Robust Bayesian FDR Control Using Bayes Factors, with Applications to Multi-tissue eQTL Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 28-49, June.
    3. Donatello Telesca & Lurdes Y.T. Inoue & Mauricio Neira & Ruth Etzioni & Martin Gleave & Colleen Nelson, 2009. "Differential Expression and Network Inferences through Functional Data Modeling," Biometrics, The International Biometric Society, vol. 65(3), pages 793-804, September.
    4. Jasper Panten & Tobias Heinen & Christina Ernst & Nils Eling & Rebecca E. Wagner & Maja Satorius & John C. Marioni & Oliver Stegle & Duncan T. Odom, 2024. "The dynamic genetic determinants of increased transcriptional divergence in spermatids," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Elin Grundberg & Veronique Adoue & Tony Kwan & Bing Ge & Qing Ling Duan & Kevin C L Lam & Vonda Koka & Andreas Kindmark & Scott T Weiss & Kelan Tantisira & Hans Mallmin & Benjamin A Raby & Olle Nilsso, 2011. "Global Analysis of the Impact of Environmental Perturbation on cis-Regulation of Gene Expression," PLOS Genetics, Public Library of Science, vol. 7(1), pages 1-17, January.
    6. Vinciotti Veronica & Yu Keming, 2009. "M-quantile Regression Analysis of Temporal Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-22, September.
    7. Zachary R. McCaw & Sheila M. Gaynor & Ryan Sun & Xihong Lin, 2023. "Leveraging a surrogate outcome to improve inference on a partially missing target outcome," Biometrics, The International Biometric Society, vol. 79(2), pages 1472-1484, June.
    8. Hillary Koch & Cheryl A. Keller & Guanjue Xiang & Belinda Giardine & Feipeng Zhang & Yicheng Wang & Ross C. Hardison & Qunhua Li, 2022. "CLIMB: High-dimensional association detection in large scale genomic data," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Chaturvedi Nimisha & Menezes Renée X. de & Goeman Jelle J. & Wieringen Wessel van, 2018. "A test for detecting differential indirect trans effects between two groups of samples," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(5), pages 1-11, October.
    10. Heather E Wheeler & Kaanan P Shah & Jonathon Brenner & Tzintzuni Garcia & Keston Aquino-Michaels & GTEx Consortium & Nancy J Cox & Dan L Nicolae & Hae Kyung Im, 2016. "Survey of the Heritability and Sparse Architecture of Gene Expression Traits across Human Tissues," PLOS Genetics, Public Library of Science, vol. 12(11), pages 1-23, November.
    11. Marot, Guillemette & Foulley, Jean-Louis & Jaffrzic, Florence, 2009. "A structural mixed model to shrink covariance matrices for time-course differential gene expression studies," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1630-1638, March.
    12. Mike Thompson & Mary Grace Gordon & Andrew Lu & Anchit Tandon & Eran Halperin & Alexander Gusev & Chun Jimmie Ye & Brunilda Balliu & Noah Zaitlen, 2022. "Multi-context genetic modeling of transcriptional regulation resolves novel disease loci," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.