IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002312.html
   My bibliography  Save this article

Failure of Adaptive Self-Organized Criticality during Epileptic Seizure Attacks

Author

Listed:
  • Christian Meisel
  • Alexander Storch
  • Susanne Hallmeyer-Elgner
  • Ed Bullmore
  • Thilo Gross

Abstract

Critical dynamics are assumed to be an attractive mode for normal brain functioning as information processing and computational capabilities are found to be optimal in the critical state. Recent experimental observations of neuronal activity patterns following power-law distributions, a hallmark of systems at a critical state, have led to the hypothesis that human brain dynamics could be poised at a phase transition between ordered and disordered activity. A so far unresolved question concerns the medical significance of critical brain activity and how it relates to pathological conditions. Using data from invasive electroencephalogram recordings from humans we show that during epileptic seizure attacks neuronal activity patterns deviate from the normally observed power-law distribution characterizing critical dynamics. The comparison of these observations to results from a computational model exhibiting self-organized criticality (SOC) based on adaptive networks allows further insights into the underlying dynamics. Together these results suggest that brain dynamics deviates from criticality during seizures caused by the failure of adaptive SOC. Author Summary: Over the recent years it has become apparent that the concept of phase transitions is not only applicable to the systems classically considered in physics. It applies to a much wider class of complex systems exhibiting phases, characterized by qualitatively different types of long-term behavior. In the critical states, which are located directly at the transition, small changes can have a large effect on the system. This and other properties of critical states prove to be advantageous for computation and memory. It is therefore suspected that also cerebral neural networks operate close to criticality. This is supported by the in vitro and in vivo measurements of power-laws of certain scaling relationships that are the hallmarks of phase transitions. While critical dynamics is arguably an attractive mode of normal brain functioning, its relation to pathological brain conditions is still unresolved. Here we show that brain dynamics deviates from a critical state during epileptic seizure attacks in vivo. Furthermore, insights from a computational model suggest seizures to be caused by the failure of adaptive self-organized criticality, a mechanism of self-organization to criticality based on the interplay between network dynamics and topology.

Suggested Citation

  • Christian Meisel & Alexander Storch & Susanne Hallmeyer-Elgner & Ed Bullmore & Thilo Gross, 2012. "Failure of Adaptive Self-Organized Criticality during Epileptic Seizure Attacks," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-8, January.
  • Handle: RePEc:plo:pcbi00:1002312
    DOI: 10.1371/journal.pcbi.1002312
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002312
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002312&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manfred G Kitzbichler & Marie L Smith & Søren R Christensen & Ed Bullmore, 2009. "Broadband Criticality of Human Brain Network Synchronization," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruno Del Papa & Viola Priesemann & Jochen Triesch, 2017. "Criticality meets learning: Criticality signatures in a self-organizing recurrent neural network," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-21, May.
    2. Rodrigo P. Rocha & Loren Koçillari & Samir Suweis & Michele Filippo De Grazia & Michel Thiebaut Schotten & Marco Zorzi & Maurizio Corbetta, 2022. "Recovery of neural dynamics criticality in personalized whole-brain models of stroke," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Annika Hagemann & Jens Wilting & Bita Samimizad & Florian Mormann & Viola Priesemann, 2021. "Assessing criticality in pre-seizure single-neuron activity of human epileptic cortex," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-18, March.
    4. Jasleen Gundh & Awaneesh Singh & R K Brojen Singh, 2015. "Ordering Dynamics in Neuron Activity Pattern Model: An Insight to Brain Functionality," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-16, October.
    5. Forough Habibollahi & Brett J. Kagan & Anthony N. Burkitt & Chris French, 2023. "Critical dynamics arise during structured information presentation within embodied in vitro neuronal networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zueva Marina V, 2018. "A New Look at Stimulation Therapy with Complex-Structured Stimuli in Traumatic Brain Injuries," Global Journal of Addiction & Rehabilitation Medicine, Juniper Publishers Inc., vol. 5(1), pages 12-16, January.
    2. Werner, Gerhard, 2013. "Consciousness viewed in the framework of brain phase space dynamics, criticality, and the Renormalization Group," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 3-12.
    3. Robert G. Sacco, 2019. "The Predictability of Synchronicity Experience: Results from a Survey of Jungian Analysts," International Journal of Psychological Studies, Canadian Center of Science and Education, vol. 11(3), pages 1-46, September.
    4. Todd Zorick & Mark A Mandelkern, 2013. "Multifractal Detrended Fluctuation Analysis of Human EEG: Preliminary Investigation and Comparison with the Wavelet Transform Modulus Maxima Technique," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-7, July.
    5. Fingelkurts, Andrew A. & Fingelkurts, Alexander A. & Neves, Carlos F.H., 2013. "Consciousness as a phenomenon in the operational architectonics of brain organization: Criticality and self-organization considerations," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 13-31.
    6. Martinez-Saito, Mario, 2022. "Discrete scaling and criticality in a chain of adaptive excitable integrators," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    7. Wei, Jinling & Zhou, Haiyan & Meng, Jun & Zhang, Fan & Chen, Yunmo & Zhou, Su, 2016. "The SOC in cells’ living expectations of Conway’s Game of Life and its extended version," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 348-352.
    8. Mikail Rubinov & Olaf Sporns & Jean-Philippe Thivierge & Michael Breakspear, 2011. "Neurobiologically Realistic Determinants of Self-Organized Criticality in Networks of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-14, June.
    9. Marcelo G Mattar & Michael W Cole & Sharon L Thompson-Schill & Danielle S Bassett, 2015. "A Functional Cartography of Cognitive Systems," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-26, December.
    10. Aguilar-Velázquez, D. & Guzmán-Vargas, L., 2017. "Synchronization and 1/f signals in interacting small-world networks," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 418-425.
    11. Allegrini, Paolo & Paradisi, Paolo & Menicucci, Danilo & Laurino, Marco & Bedini, Remo & Piarulli, Andrea & Gemignani, Angelo, 2013. "Sleep unconsciousness and breakdown of serial critical intermittency: New vistas on the global workspace," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 32-43.
    12. Laura E. Suárez & Agoston Mihalik & Filip Milisav & Kenji Marshall & Mingze Li & Petra E. Vértes & Guillaume Lajoie & Bratislav Misic, 2024. "Connectome-based reservoir computing with the conn2res toolbox," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Adrián Ponce-Alvarez & Gustavo Deco & Patric Hagmann & Gian Luca Romani & Dante Mantini & Maurizio Corbetta, 2015. "Resting-State Temporal Synchronization Networks Emerge from Connectivity Topology and Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-23, February.
    14. Stoop, Ruedi & Kanders, Karlis & Lorimer, Tom & Held, Jenny & Albert, Carlo, 2016. "Big data naturally rescaled," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 81-90.
    15. Korosh Mahmoodi & Bruce J. West & Paolo Grigolini, 2018. "Self-Organized Temporal Criticality: Bottom-Up Resilience versus Top-Down Vulnerability," Complexity, Hindawi, vol. 2018, pages 1-10, March.
    16. David Samu & Anil K Seth & Thomas Nowotny, 2014. "Influence of Wiring Cost on the Large-Scale Architecture of Human Cortical Connectivity," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-24, April.
    17. Baysal, Veli & Yılmaz, Ergin, 2021. "Chaotic Signal Induced Delay Decay in Hodgkin-Huxley Neuron," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    18. Rodrigo P. Rocha & Loren Koçillari & Samir Suweis & Michele Filippo De Grazia & Michel Thiebaut Schotten & Marco Zorzi & Maurizio Corbetta, 2022. "Recovery of neural dynamics criticality in personalized whole-brain models of stroke," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    19. Christian Meisel & Christian Kuehn, 2012. "Scaling Effects and Spatio-Temporal Multilevel Dynamics in Epileptic Seizures," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-11, February.
    20. Anna Barnes & Edward T Bullmore & John Suckling, 2009. "Endogenous Human Brain Dynamics Recover Slowly Following Cognitive Effort," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-6, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.