IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000359.html
   My bibliography  Save this article

Polymorphism Data Can Reveal the Origin of Species Abundance Statistics

Author

Listed:
  • Yosef E Maruvka
  • Nadav M Shnerb

Abstract

What is the underlying mechanism behind the fat-tailed statistics observed for species abundance distributions? The two main hypotheses in the field are the adaptive (niche) theories, where species abundance reflects its fitness, and the neutral theory that assumes demographic stochasticity as the main factor determining community structure. Both explanations suggest quite similar species-abundance distributions, but very different histories: niche scenarios assume that a species population in the past was similar to the observed one, while neutral scenarios are characterized by strongly fluctuating populations. Since the genetic variations within a population depend on its abundance in the past, we present here a way to discriminate between the theories using the genetic diversity of noncoding DNA. A statistical test, based on the Fu-Li method, has been developed and enables such a differentiation. We have analyzed the results gathered from individual-based simulation of both types of histories and obtained clear distinction between the Fu-Li statistics of the neutral scenario and that of the niche scenario. Our results suggest that data for 10–50 species, with approximately 30 sequenced individuals for each species, may allow one to distinguish between these two theories.Author Summary: One purchases 100 wineglasses and 100 pairs of pants. After one year, 10 glasses and 10 pants survive. What can be said about the relative quality of the survivors? Well, clothes “die” as a result of accumulated wear; the surviving items are of better quality. The breaking of a wineglass is an external, random event: here the survivors are not the best, but the luckiest. To tell apart the superior from the fortunate, one should examine the development over time: the number of surviving items decays exponentially with time for the glasses and follows a sigmoid curve for the pants. An ongoing argument among macroecologists deals with similar issues. Adaptive theories suggest that the frequent species are the fittest, while the neutral theory explains the observed frequencies as a result of demographic stochasticity, assuming all species to have the same fitness. The histories suggested by the two scenarios are clearly different, but how can one probe the prehistoric abundance of species? In fact, past abundance is reflected in current genetic variance within a population. Here, we present a new technique, based on the Fu-Li F-statistic, which allows one to distinguish between niche and neutral scenarios and to resolve this important debate.

Suggested Citation

  • Yosef E Maruvka & Nadav M Shnerb, 2009. "Polymorphism Data Can Reveal the Origin of Species Abundance Statistics," PLOS Computational Biology, Public Library of Science, vol. 5(4), pages 1-6, April.
  • Handle: RePEc:plo:pcbi00:1000359
    DOI: 10.1371/journal.pcbi.1000359
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000359
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000359&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James S. Clark & Jason S. McLachlan, 2003. "Stability of forest biodiversity," Nature, Nature, vol. 423(6940), pages 635-638, June.
    2. Brian J. McGill, 2003. "A test of the unified neutral theory of biodiversity," Nature, Nature, vol. 422(6934), pages 881-885, April.
    3. J. Timothy Wootton, 2005. "Field parameterization and experimental test of the neutral theory of biodiversity," Nature, Nature, vol. 433(7023), pages 309-312, January.
    4. Sandro Azaele & Simone Pigolotti & Jayanth R. Banavar & Amos Maritan, 2006. "Dynamical evolution of ecosystems," Nature, Nature, vol. 444(7121), pages 926-928, December.
    5. Igor Volkov & Jayanth R. Banavar & Stephen P. Hubbell & Amos Maritan, 2003. "Neutral theory and relative species abundance in ecology," Nature, Nature, vol. 424(6952), pages 1035-1037, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edgardo Brigatti & Estevan Augusto Amazonas Mendes, 2021. "Testing macroecological theories in cryptocurrency market: neutral models can not describe diversity patterns and their variation," Papers 2111.02067, arXiv.org, revised Jul 2022.
    2. Tancredi Caruso & Jeff R Powell & Matthias C Rillig, 2012. "Compositional Divergence and Convergence in Local Communities and Spatially Structured Landscapes," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-10, April.
    3. Beeravolu, Champak R. & Couteron, Pierre & Pélissier, Raphaël & Munoz, François, 2009. "Studying ecological communities from a neutral standpoint: A review of models’ structure and parameter estimation," Ecological Modelling, Elsevier, vol. 220(20), pages 2603-2610.
    4. Chen, Youhua, 2016. "Local speciation can be incorporated into neutral theory of biodiversity," Ecological Modelling, Elsevier, vol. 325(C), pages 67-70.
    5. Saltré, F. & Chuine, I. & Brewer, S. & Gaucherel, C., 2009. "A phenomenological model without dispersal kernel to model species migration," Ecological Modelling, Elsevier, vol. 220(24), pages 3546-3554.
    6. Köhler, Peter & Huth, Andreas, 2007. "Impacts of recruitment limitation and canopy disturbance on tropical tree species richness," Ecological Modelling, Elsevier, vol. 203(3), pages 511-517.
    7. Jochen Merker & Benjamin Kunsch & Gregor Schuldt, 2021. "Nonlinear Compartment Models with Time-Dependent Parameters," Mathematics, MDPI, vol. 9(14), pages 1-13, July.
    8. Han, Zhi-Quan & Liu, Tong & Zhao, Wen-Xuan & Wang, Han-Yue & Sun, Qin-Ming & Sun, Hui & Li, Bai-Lian, 2022. "A new species abundance distribution model including the hydrological niche differentiation in water-limited ecosystems," Ecological Modelling, Elsevier, vol. 470(C).
    9. Babak, Petro & He, Fangliang, 2009. "A neutral model of edge effects," Theoretical Population Biology, Elsevier, vol. 75(1), pages 76-83.
    10. Chengyi Tu & Paolo DOdorico & Samir Suweis, 2018. "Critical slowing down associated with critical transition and risk of collapse in cryptocurrency," Papers 1806.08386, arXiv.org, revised Nov 2019.
    11. Marco Marani & Tommaso Zillio & Enrica Belluco & Sonia Silvestri & Amos Maritan, 2006. "Non-Neutral Vegetation Dynamics," PLOS ONE, Public Library of Science, vol. 1(1), pages 1-5, December.
    12. Chisholm, Ryan A. & O’Dwyer, James P., 2014. "Species ages in neutral biodiversity models," Theoretical Population Biology, Elsevier, vol. 93(C), pages 85-94.
    13. Kolasa, Jurek & Allen, Craig R. & Sendzimir, Jan & Stow, Craig A., 2012. "Predictions and retrodictions of the hierarchical representation of habitat in heterogeneous environments," Ecological Modelling, Elsevier, vol. 245(C), pages 199-207.
    14. Susanna C Manrubia & Jacob B Axelsen & Damián H Zanette, 2012. "Role of Demographic Dynamics and Conflict in the Population-Area Relationship for Human Languages," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-7, July.
    15. Fung, Tak & Chisholm, Ryan A., 2023. "Improving the realism of neutral ecological models by incorporating transient dynamics with temporal changes in community size," Theoretical Population Biology, Elsevier, vol. 149(C), pages 12-26.
    16. Yang, Yinghui & Bao, Liping, 2022. "Scale-dependent changes in species richness caused by invader competition," Ecological Modelling, Elsevier, vol. 469(C).
    17. Omar Al Hammal & David Alonso & Rampal S Etienne & Stephen J Cornell, 2015. "When Can Species Abundance Data Reveal Non-neutrality?," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-23, March.
    18. Urban, Natasha A. & Matter, Stephen F., 2018. "Metapopulation mirages: Problems parsing process from pattern," Ecological Modelling, Elsevier, vol. 375(C), pages 20-29.
    19. Shen, Yunyi & Olson, Erik R. & Van Deelen, Timothy R., 2021. "Spatially explicit modeling of community occupancy using Markov Random Field models with imperfect observation: Mesocarnivores in Apostle Islands National Lakeshore," Ecological Modelling, Elsevier, vol. 459(C).
    20. Alex D Washburne & Joshua W Burby & Daniel Lacker, 2016. "Novel Covariance-Based Neutrality Test of Time-Series Data Reveals Asymmetries in Ecological and Economic Systems," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-14, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.