IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/3003337.html
   My bibliography  Save this article

Developmental auditory deprivation in one ear impairs brainstem binaural processing and reduces spatial hearing acuity

Author

Listed:
  • Kelsey L Anbuhl
  • Alexander T Ferber
  • Andrew D Brown
  • Victor Benichoux
  • Nathaniel T Greene
  • Daniel J Tollin

Abstract

Early sensory experience can exert lasting perceptual consequences. For example, a brief period of auditory deprivation early in life can lead to persistent spatial hearing deficits. Some forms of hearing loss (i.e., conductive; CHL) can distort acoustical cues needed for spatial hearing, which depend on inputs from both ears. We hypothesize that asymmetric acoustic input during development disrupts auditory circuits that integrate binaural information. Here, we identify prolonged maturation of the binaural auditory brainstem in the guinea pig by tracking auditory evoked potentials across development. Using this age range, we induce a reversible unilateral CHL and ask whether behavioral and neural maturation are disrupted. We find that developmental CHL is associated with alterations in a brainstem readout of binaural function, an effect that was not observed in a separate cohort with adult-onset CHL. Startle-based behavioral measures suggest that Early CHL animals exhibit reduced spatial resolution for high-frequency sound sources. Finally, single-unit recordings of auditory midbrain neurons reveal significantly poorer neural acuity to a sound location cue that largely depends on high-frequency sounds. Thus, these findings show that unilateral deprivation can disrupt developing auditory circuits that integrate binaural information and may give rise to lingering spatial hearing deficits.Early unilateral auditory deprivation can cause lasting spatial hearing deficits. This study shows that unilateral hearing loss during development impairs binaural brainstem function and spatial hearing acuity in guinea pigs, effects not observed with adult-onset hearing loss.

Suggested Citation

  • Kelsey L Anbuhl & Alexander T Ferber & Andrew D Brown & Victor Benichoux & Nathaniel T Greene & Daniel J Tollin, 2025. "Developmental auditory deprivation in one ear impairs brainstem binaural processing and reduces spatial hearing acuity," PLOS Biology, Public Library of Science, vol. 23(9), pages 1-34, September.
  • Handle: RePEc:plo:pbio00:3003337
    DOI: 10.1371/journal.pbio.3003337
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3003337
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.3003337&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.3003337?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sonja B. Hofer & Thomas D. Mrsic-Flogel & Tobias Bonhoeffer & Mark Hübener, 2009. "Experience leaves a lasting structural trace in cortical circuits," Nature, Nature, vol. 457(7227), pages 313-317, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanlin Zhu & Fei He & Pavlo Zolotavin & Saumil Patel & Andreas S. Tolias & Lan Luan & Chong Xie, 2025. "Temporal coding carries more stable cortical visual representations than firing rate over time," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    2. Sanne Ten Oever & Alexander T. Sack & Carina R. Oehrn & Nikolai Axmacher, 2021. "An engram of intentionally forgotten information," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Yichen Zhang & Gan He & Lei Ma & Xiaofei Liu & J. J. Johannes Hjorth & Alexander Kozlov & Yutao He & Shenjian Zhang & Jeanette Hellgren Kotaleski & Yonghong Tian & Sten Grillner & Kai Du & Tiejun Huan, 2023. "A GPU-based computational framework that bridges neuron simulation and artificial intelligence," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Zhiwei Xu & Erez Geron & Luis M. Pérez-Cuesta & Yang Bai & Wen-Biao Gan, 2023. "Generalized extinction of fear memory depends on co-allocation of synaptic plasticity in dendrites," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "The Formation of Multi-synaptic Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-29, January.
    6. Ioannis P. Kotsalas & Anna Antoniou & Michael Scoullos, 2017. "Decoding Mass Media Techniques and Education for Sustainable Development," Journal of Education for Sustainable Development, , vol. 11(2), pages 102-122, September.
    7. Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "Formation and Maintenance of Robust Long-Term Information Storage in the Presence of Synaptic Turnover," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-22, December.
    8. Joel Bauer & Uwe Lewin & Elizabeth Herbert & Julijana Gjorgjieva & Carl E. Schoonover & Andrew J. P. Fink & Tobias Rose & Tobias Bonhoeffer & Mark Hübener, 2024. "Sensory experience steers representational drift in mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:3003337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.