IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v12y2025i1d10.1057_s41599-025-04761-8.html
   My bibliography  Save this article

Stock market trend prediction using deep neural network via chart analysis: a practical method or a myth?

Author

Listed:
  • Erfan Radfar

    (Sharif University of Technology)

Abstract

In this study, we investigate the feasibility of using deep learning for stock market prediction and technical analysis. We explore the dynamics of the stock market and prominent classical methods and deep learning-based approaches that are used to forecast prices and market trends. Subsequently, we evaluate prior research applicability for stock markets and their efficacy in real-world applications. Our analysis reveals that the most prominent studies regarding LSTMs and DNNs predictors for stock market forecasting create a false positive. Therefore, these approaches are impractical for the real market if the temporal context of predictions is overlooked. In addition, we identify specific errors in these studies and explain how they may lead to suboptimal or misleading results. Furthermore, we examine alternative deep learning architectures that may be better suited for predicting dynamical systems including CNN, LSTM, Transformer, and their combinations on real data of 12 stocks in the Tehran Stock Exchange (TSE). We propose an optimal CNN-based method, which can better capture the dynamics of semi-random environments such as the stock market, providing a more sophisticated prediction. However, our finding indicates that even with this enhanced method, the predictive aspect of vanilla DNN algorithms is minimal for an environment as noisy and chaotic as the stock market, particularly when working with small data sets. Finally, we discuss why our algorithm can avoid false positives and provide a better solution for time-series and trend prediction.

Suggested Citation

  • Erfan Radfar, 2025. "Stock market trend prediction using deep neural network via chart analysis: a practical method or a myth?," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:pal:palcom:v:12:y:2025:i:1:d:10.1057_s41599-025-04761-8
    DOI: 10.1057/s41599-025-04761-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-025-04761-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-025-04761-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinho Lee & Raehyun Kim & Yookyung Koh & Jaewoo Kang, 2019. "Global Stock Market Prediction Based on Stock Chart Images Using Deep Q-Network," Papers 1902.10948, arXiv.org.
    2. Tran Phuoc & Pham Thi Kim Anh & Phan Huy Tam & Chien V. Nguyen, 2024. "Applying machine learning algorithms to predict the stock price trend in the stock market – The case of Vietnam," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-18, December.
    3. David Noel, 2023. "Stock Price Prediction using Dynamic Neural Networks," Papers 2306.12969, arXiv.org.
    4. Bethany Lusch & J. Nathan Kutz & Steven L. Brunton, 2018. "Deep learning for universal linear embeddings of nonlinear dynamics," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalmykov, N.I. & Zagidullin, R. & Rogov, O.Y. & Rykovanov, S. & Dylov, D.V., 2024. "Suppressing modulation instability with reinforcement learning," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    2. Ding, Jiaqi & Zhao, Pu & Liu, Changjun & Wang, Xiaofang & Xie, Rong & Liu, Haitao, 2024. "From irregular to continuous: The deep Koopman model for time series forecasting of energy equipment," Applied Energy, Elsevier, vol. 364(C).
    3. Kruthof, Garvin & Müller, Sebastian, 2025. "Can deep reinforcement learning beat 1N," Finance Research Letters, Elsevier, vol. 75(C).
    4. Chen, Zhong & Chen, Xiaofang & Liu, Jinping & Cen, Lihui & Gui, Weihua, 2024. "Learning model predictive control of nonlinear systems with time-varying parameters using Koopman operator," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    5. Konstantin Avchaciov & Marina P. Antoch & Ekaterina L. Andrianova & Andrei E. Tarkhov & Leonid I. Menshikov & Olga Burmistrova & Andrei V. Gudkov & Peter O. Fedichev, 2022. "Unsupervised learning of aging principles from longitudinal data," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Ali Abrishami & Jafar Habibi & AmirAli Jarrahi & Dariush Amiri & MohammadAmin Fazli, 2024. "A Decision Support System for Stock Selection and Asset Allocation Based on Fundamental Data Analysis," Papers 2412.05297, arXiv.org.
    7. Huifang Huang & Ting Gao & Yi Gui & Jin Guo & Peng Zhang, 2022. "Stock Trading Optimization through Model-based Reinforcement Learning with Resistance Support Relative Strength," Papers 2205.15056, arXiv.org.
    8. Garmaev, Sergei & Fink, Olga, 2024. "Deep Koopman Operator-based degradation modelling," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    9. Rachna Sable & Shivani Goel & Pradeep Chatterjee, 2024. "Deep Learning Model for Fusing Spatial and Temporal Data for Stock Market Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1639-1662, September.
    10. Zhou, Jun & Jia, Yubin & Sun, Changyin, 2025. "Flywheel energy storage system controlled using tube-based deep Koopman model predictive control for wind power smoothing," Applied Energy, Elsevier, vol. 381(C).
    11. Gong, Xun & Wang, Xiaozhe & Cao, Bo, 2023. "On data-driven modeling and control in modern power grids stability: Survey and perspective," Applied Energy, Elsevier, vol. 350(C).
    12. Rijwan Khan, 2023. "Deep Learning System and It’s Automatic Testing: An Approach," Annals of Data Science, Springer, vol. 10(4), pages 1019-1033, August.
    13. Mallen, Alex T. & Lange, Henning & Kutz, J. Nathan, 2024. "Deep Probabilistic Koopman: Long-term time-series forecasting under periodic uncertainties," International Journal of Forecasting, Elsevier, vol. 40(3), pages 859-868.
    14. Zihao Guo & Hanqing Jin & Jiaqi Kuang & Zhongmin Qian & Jinghan Wang, 2025. "Signature Decomposition Method Applying to Pair Trading," Papers 2505.05332, arXiv.org.
    15. Titi Purwandari & Riaman & Yuyun Hidayat & Sukono & Riza Andrian Ibrahim & Rizki Apriva Hidayana, 2023. "Selecting and Weighting Mechanisms in Stock Portfolio Design Based on Clustering Algorithm and Price Movement Analysis," Mathematics, MDPI, vol. 11(19), pages 1-22, October.
    16. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    17. Kamrul Hasan Tuhin & Ashadun Nobi & Mahmudul Hasan Rakib & Jae Woo Lee, 2025. "Long short-term memory autoencoder based network of financial indices," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-15, December.
    18. Zequn Lin & Zhaofan Lu & Zengru Di & Ying Tang, 2024. "Learning noise-induced transitions by multi-scaling reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Mandal, Ankit & Tiwari, Yash & Panigrahi, Prasanta K. & Pal, Mayukha, 2022. "Physics aware analytics for accurate state prediction of dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Mattia Cenedese & Joar Axås & Bastian Bäuerlein & Kerstin Avila & George Haller, 2022. "Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:12:y:2025:i:1:d:10.1057_s41599-025-04761-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.