IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v65y2014i6p806-823.html
   My bibliography  Save this article

Modelling and analysis of sustainable operations management: certain investigations for research and applications

Author

Listed:
  • Angappa Gunasekaran

    (University of Massachusetts – Dartmouth, MA, USA)

  • Zahir Irani

    (Brunel University, Middlesex, UK)

  • Thanos Papadopoulos

    (Sussex School of Business, Management, and Economics, University of Sussex, Falmer, Brighton, UK)

Abstract

Sustainable operations management (SOM) can be defined as the operations strategies, tactics and techniques, and operational policies to support both economic and environmental objectives and goals. The subject of sustainability has gained much attention from both researchers and practitioners in the past 6–8 years. Most of the articles deal with sustainability from environmental perspectives, but a limited number of them integrate both economic and environmental implications or focus on trading-off between profitability, competitiveness and environmental dimensions. Moreover, there is a limited focus on modelling and analysis (MA) of SOM integrating and balancing the interests of both economic and environmental interests. Therefore, an attempt has been made in this paper to review the extant literature on SOM. The objective is to understand the definition of SOM and present the current status of research in MA, as well as future research directions in the field. Considering the recent focus of the subject, we review the literature on MA of SOM beginning in 2000 in order to make our study current and more relevant for both researchers and practitioners. Finally, a summary of findings and conclusions is reported.

Suggested Citation

  • Angappa Gunasekaran & Zahir Irani & Thanos Papadopoulos, 2014. "Modelling and analysis of sustainable operations management: certain investigations for research and applications," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(6), pages 806-823, June.
  • Handle: RePEc:pal:jorsoc:v:65:y:2014:i:6:p:806-823
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v65/n6/pdf/jors2013171a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v65/n6/full/jors2013171a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daryanto, Yosef & Wee, Hui Ming & Astanti, Ririn Diar, 2019. "Three-echelon supply chain model considering carbon emission and item deterioration," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 368-383.
    2. Adel A. Alamri, 2023. "Carbon Emissions Effect on Vendor-Managed Inventory System Considering Displaced Re-Start-Up Production Time," Logistics, MDPI, vol. 7(4), pages 1-29, September.
    3. Shivam Gupta & Nezih Altay & Zongwei Luo, 2019. "Big data in humanitarian supply chain management: a review and further research directions," Annals of Operations Research, Springer, vol. 283(1), pages 1153-1173, December.
    4. Ana Beatriz Lopes de Sousa Jabbour & Charbel Jose Chiappetta Jabbour & Moacir Godinho Filho & David Roubaud, 2018. "Industry 4.0 and the circular economy: a proposed research agenda and original roadmap for sustainable operations," Annals of Operations Research, Springer, vol. 270(1), pages 273-286, November.
    5. Mina Nasiri & Tero Rantala & Minna Saunila & Juhani Ukko & Hannu Rantanen, 2018. "Transition towards Sustainable Solutions: Product, Service, Technology, and Business Model," Sustainability, MDPI, vol. 10(2), pages 1-18, January.
    6. de Sousa Jabbour, Ana Beatriz Lopes & Jabbour, Charbel Jose Chiappetta & Foropon, Cyril & Godinho Filho, Moacir, 2018. "When titans meet – Can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 18-25.
    7. Grazia Dicuonzo & Graziana Galeone & Simona Ranaldo & Mario Turco, 2020. "The Key Drivers of Born-Sustainable Businesses: Evidence from the Italian Fashion Industry," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    8. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    9. Qinpeng Wang & Longfei He & Daozhi Zhao & Michele Lundy, 2018. "Diverse Schemes of Cost Pooling for Carbon-Reduction Outsourcing in Low-Carbon Supply Chains," Energies, MDPI, vol. 11(11), pages 1-17, November.
    10. Kannan Govindan, 2022. "Tunneling the barriers of blockchain technology in remanufacturing for achieving sustainable development goals: A circular manufacturing perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3769-3785, December.
    11. Gang Wang & Angappa Gunasekaran, 2017. "Modeling and analysis of sustainable supply chain dynamics," Annals of Operations Research, Springer, vol. 250(2), pages 521-536, March.
    12. Shao, Lulu & Yang, Jun & Zhang, Min, 2017. "Subsidy scheme or price discount scheme? Mass adoption of electric vehicles under different market structures," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1181-1195.
    13. Bożena Gajdzik & Włodzimierz Sroka, 2021. "Resource Intensity vs. Investment in Production Installations—The Case of the Steel Industry in Poland," Energies, MDPI, vol. 14(2), pages 1-16, January.
    14. Yosef Daryanto & Djoko Setyanto, 2023. "Production Inventory Optimization Considering Direct and Indirect Carbon Emissions under a Cap-and-Trade Regulation," Logistics, MDPI, vol. 7(1), pages 1-18, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:65:y:2014:i:6:p:806-823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.