IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v19y2021i5p860-909..html
   My bibliography  Save this article

A Latent Factor Model for Forecasting Realized Variances
[Stock Returns and Volatility: Pricing the Short-Run and Long-Run Components of Market Risk]

Author

Listed:
  • Giorgio Calzolari
  • Roxana Halbleib
  • Aygul Zagidullina

Abstract

This article proposes a parsimonious model to forecast large vectors of realized variances (RVar) by exploiting their common dynamics within a latent factor structure. Their long persistence is captured by aggregating latent factors with AR(1) dynamics. The model has obvious advantages over standard autoregressive models not only in terms of parametrization, but also in terms of efficiency, when increasing the dimension of the vector, as it provides more information on the commonality of the series’ dynamics. The model easily accommodates further empirical features of RVars, such as conditional heteroskedasticity. For estimation purposes, we use the maximum likelihood method based on Kalman filter and the efficient method of moments, both being easy to implement and providing accurate estimates. Our empirical illustration on real data shows that the model we propose often outperforms standard models, most of which are, for vectors of RVar series, only implementable under heavy parametric restrictions.

Suggested Citation

  • Giorgio Calzolari & Roxana Halbleib & Aygul Zagidullina, 2021. "A Latent Factor Model for Forecasting Realized Variances [Stock Returns and Volatility: Pricing the Short-Run and Long-Run Components of Market Risk]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 860-909.
  • Handle: RePEc:oup:jfinec:v:19:y:2021:i:5:p:860-909.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbz036
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
    2. Giorgio Calzolari & Roxana Halbleib & Christian Mucher, 2023. "Sequential Estimation of Multivariate Factor Stochastic Volatility Models," Papers 2302.07052, arXiv.org.

    More about this item

    Keywords

    realized variance; hyperbolic decay; autocorrelation; dynamic factor model; factor-GARCH model; efficient method of moments; Kalman filter;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:19:y:2021:i:5:p:860-909.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.