IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v7y2012i4p275-279.html
   My bibliography  Save this article

Preparation, hydrothermal stability and thermal adsorption storage properties of binderless zeolite beads

Author

Listed:
  • Jochen Jänchen
  • Kristin Schumann
  • Erik Thrun
  • Alfons Brandt
  • Baldur Unger
  • Udo Hellwig

Abstract

Novel binderless zeolite beads of types A and X have been synthesized and characterized by scanning electron microscopy, mercury intrusion, nitrogen adsorption, thermogravimetry, water adsorption isotherm measurements, cyclic hydrothermal treatments and storage tests. The binderless molecular sieves show an improved adsorption capacity, sufficient hydrothermal stability, higher specific energies and the potential for a better performance density of the storage. Both open and closed storage tests have shown comparable adsorption capacities and specific energies for the binderless molecular sieves. A significantly higher discharging temperature, however, could be realized with the open storage system. Copyright , Oxford University Press.

Suggested Citation

  • Jochen Jänchen & Kristin Schumann & Erik Thrun & Alfons Brandt & Baldur Unger & Udo Hellwig, 2012. "Preparation, hydrothermal stability and thermal adsorption storage properties of binderless zeolite beads," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 7(4), pages 275-279, March.
  • Handle: RePEc:oup:ijlctc:v:7:y:2012:i:4:p:275-279
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/cts037
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Heng & Liu, Shuli & Shukla, Ashish & Zou, Yuliang & Han, Xiaojing & Shen, Yongliang & Yang, Liu & Zhang, Pengwei & Kusakana, Kanzumba, 2022. "Thermal performance study of thermochemical reactor using net-packed method," Renewable Energy, Elsevier, vol. 182(C), pages 483-493.
    2. Scapino, Luca & De Servi, Carlo & Zondag, Herbert A. & Diriken, Jan & Rindt, Camilo C.M. & Sciacovelli, Adriano, 2020. "Techno-economic optimization of an energy system with sorption thermal energy storage in different energy markets," Applied Energy, Elsevier, vol. 258(C).
    3. Henninger, Stefan K. & Ernst, Sebastian-Johannes & Gordeeva, Larisa & Bendix, Phillip & Fröhlich, Dominik & Grekova, Alexandra D. & Bonaccorsi, Lucio & Aristov, Yuri & Jaenchen, Jochen, 2017. "New materials for adsorption heat transformation and storage," Renewable Energy, Elsevier, vol. 110(C), pages 59-68.
    4. Wang, Yihan & Chen, Tingsen & Liu, Shuli & Ji, Wenjie & Shen, Yongliang & Wang, Zhihao & Li, Yongliang, 2024. "Performance optimization and evaluation of integrating thermochemical energy storage with low-temperature driven absorption heat pump for building heating: 4E analyses," Applied Energy, Elsevier, vol. 372(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:7:y:2012:i:4:p:275-279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.