IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v18y2023ip212-217..html
   My bibliography  Save this article

Characterization and analysis of fish waste as feedstock for biogas production

Author

Listed:
  • Hortence Ingabire
  • Boniface Ntambara
  • Ezgad Mazimpaka

Abstract

Fish waste (FW) is biodegradable waste that remains underutilized and causes a problem to the environment since the existing disposal techniques result in health risks and environmental pollution. FW has significant potential for producing biogas that decreases the reliance on fossil fuels because it contains easily biodegradable organic matter. The physicochemical analysis of the FW such as moisture content of 61.78%, volatile solids (VS) of 93.94%, total solids of 38.21%, ash content (AC) of 0.52%, total organic carbon of 54.2%, total Kjeldahl nitrogen of 9.2% and carbon to nitrogen (C/N) ratio of 5.89% were considered and analyzed in this research. In addition, the methane potential was determined and obtained using gas detector. The results shown that the methane (CH4) content in FW was 50.12%, which was the potential feedstock of FW for biogas production. Nevertheless, the VS of FW was high, which was good for this feedstock to be easily digested as the sign of producing biogas and demonstrates 99.9985% of performance rate. Finally, the FW had a lower C/N ratio compared with other biogas production waste. Future work needs to consider co-digestion with higher C/N ratio feedstocks.

Suggested Citation

  • Hortence Ingabire & Boniface Ntambara & Ezgad Mazimpaka, 2023. "Characterization and analysis of fish waste as feedstock for biogas production," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 212-217.
  • Handle: RePEc:oup:ijlctc:v:18:y:2023:i::p:212-217.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctac135
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elsayed Elbeshbishy & Angel Nakevski & Hisham Hafez & Madhumita Ray & George Nakhla, 2010. "Simulation of the Impact of SRT on Anaerobic Digestability of Ultrasonicated Hog Manure," Energies, MDPI, vol. 3(5), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ihsan Hamawand & Craig Baillie, 2015. "Anaerobic Digestion and Biogas Potential: Simulation of Lab and Industrial-Scale Processes," Energies, MDPI, vol. 8(1), pages 1-21, January.
    2. Hamawand, Ihsan, 2015. "Anaerobic digestion process and bio-energy in meat industry: A review and a potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 37-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:18:y:2023:i::p:212-217.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.