IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Estimation of controlled direct effects on a dichotomous outcome using logistic structural direct effect models

Listed author(s):
  • Stijn Vansteelandt
Registered author(s):

    We consider the problem of assessing whether an exposure affects a dichotomous outcome other than by modifying a given mediator. The standard approach, logistic regression adjusting for both exposure and the mediator, is known to be biased in the presence of confounders for the mediator-outcome relationship. Because additional regression adjustment for such confounders is only justified when they are not affected by the exposure, inverse probability weighting has been advocated, but is not ideally tailored to mediators that are continuous or have strong measured predictors. We overcome this limitation by developing inference for a novel class of causal models that are closely related to Robins' logistic structural direct effect models, but do not inherit their difficulties of estimation. We study identification and efficient estimation under the assumption that all confounders for the exposure-outcome and mediator-outcome relationships have been measured, and find adequate performance in simulation studies. We discuss extensions to case-control studies and relevant implications for the generic problem of adjustment for time-varying confounding. Copyright 2010, Oxford University Press.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Biometrika Trust in its journal Biometrika.

    Volume (Year): 97 (2010)
    Issue (Month): 4 ()
    Pages: 921-934

    in new window

    Handle: RePEc:oup:biomet:v:97:y:2010:i:4:p:921-934
    Contact details of provider: Postal:
    Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK

    Fax: 01865 267 985
    Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:97:y:2010:i:4:p:921-934. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press)

    or (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.