IDEAS home Printed from
   My bibliography  Save this article

A note on conditional aic for linear mixed-effects models


  • Hua Liang
  • Hulin Wu
  • Guohua Zou


The conventional model selection criterion, the Akaike information criterion, aic , has been applied to choose candidate models in mixed-effects models by the consideration of marginal likelihood. Vaida & Blanchard (2005) demonstrated that such a marginal aic and its small sample correction are inappropriate when the research focus is on clusters. Correspondingly, these authors suggested the use of conditional aic . Their conditional aic is derived under the assumption that the variance-covariance matrix or scaled variance-covariance matrix of random effects is known. This note provides a general conditional aic but without these strong assumptions. Simulation studies show that the proposed method is promising. Copyright 2008, Oxford University Press.

Suggested Citation

  • Hua Liang & Hulin Wu & Guohua Zou, 2008. "A note on conditional aic for linear mixed-effects models," Biometrika, Biometrika Trust, vol. 95(3), pages 773-778.
  • Handle: RePEc:oup:biomet:v:95:y:2008:i:3:p:773-778

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kubokawa, Tatsuya & Nagashima, Bui, 2012. "Parametric bootstrap methods for bias correction in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 1-16.
    2. Yuki Kawakubo & Shonosuke Sugasawa & Tatsuya Kubokawa, 2014. "Conditional AIC under Covariate Shift with Application to Small Area Prediction," CIRJE F-Series CIRJE-F-944, CIRJE, Faculty of Economics, University of Tokyo.
    3. Yu, Dalei & Zhang, Xinyu & Yau, Kelvin K.W., 2013. "Information based model selection criteria for generalized linear mixed models with unknown variance component parameters," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 245-262.
    4. Overholser, Rosanna & Xu, Ronghui, 2014. "Effective degrees of freedom and its application to conditional AIC for linear mixed-effects models with correlated error structures," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 160-170.
    5. Jonathan Bradley & Noel Cressie & Tao Shi, 2015. "Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 1-28, March.
    6. Kawakubo, Yuki & Kubokawa, Tatsuya, 2014. "Modified conditional AIC in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 44-56.
    7. Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
    8. Dimova, Rositsa B. & Markatou, Marianthi & Talal, Andrew H., 2011. "Information methods for model selection in linear mixed effects models with application to HCV data," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2677-2697, September.
    9. Kubokawa, Tatsuya, 2011. "Conditional and unconditional methods for selecting variables in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 641-660, March.
    10. Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:95:y:2008:i:3:p:773-778. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.