IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v94y2007i2p249-265.html
   My bibliography  Save this article

An asymptotic theory for model selection inference in general semiparametric problems

Author

Listed:
  • Gerda Claeskens
  • Raymond J. Carroll

Abstract

Hjort & Claeskens (2003) developed an asymptotic theory for model selection, model averaging and subsequent inference using likelihood methods in parametric models, along with associated confidence statements. In this article, we consider a semiparametric version of this problem, wherein the likelihood depends on parameters and an unknown function, and model selection/averaging is to be applied to the parametric parts of the model. We show that all the results of Hjort & Claeskens hold in the semiparametric context, if the Fisher information matrix for parametric models is replaced by the semiparametric information bound for semiparametric models, and if maximum likelihood estimators for parametric models are replaced by semiparametric efficient profile estimators. Our methods of proof employ Le Cam's contiguity lemmas, leading to transparent results. The results also describe the behaviour of semiparametric model estimators when the parametric component is misspecified, and also have implications for pointwise-consistent model selectors. Copyright 2007, Oxford University Press.

Suggested Citation

  • Gerda Claeskens & Raymond J. Carroll, 2007. "An asymptotic theory for model selection inference in general semiparametric problems," Biometrika, Biometrika Trust, vol. 94(2), pages 249-265.
  • Handle: RePEc:oup:biomet:v:94:y:2007:i:2:p:249-265
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asm034
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    2. Haili Zhang & Guohua Zou, 2020. "Cross-Validation Model Averaging for Generalized Functional Linear Model," Econometrics, MDPI, vol. 8(1), pages 1-35, February.
    3. Jiang Du & Zhongzhan Zhang & Tianfa Xie, 2017. "Focused information criterion and model averaging in censored quantile regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(5), pages 547-570, July.
    4. Toru Kitagawa & Chris Muris, 2013. "Covariate selection and model averaging in semiparametric estimation of treatment effects," CeMMAP working papers CWP61/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Chu‐An Liu & Biing‐Shen Kuo, 2016. "Model averaging in predictive regressions," Econometrics Journal, Royal Economic Society, vol. 19(2), pages 203-231, June.
    6. Wei, Jiawei & Carroll, Raymond J. & Maity, Arnab, 2011. "Testing for constant nonparametric effects in general semiparametric regression models with interactions," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 717-723, July.
    7. Shou-Yung Yin & Chu-An Liu & Chang-Ching Lin, 2021. "Focused Information Criterion and Model Averaging for Large Panels With a Multifactor Error Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 54-68, January.
    8. S. C. Pandhare & T. V. Ramanathan, 2020. "The focussed information criterion for generalised linear regression models for time series," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(4), pages 485-507, December.
    9. Tao Huang & Jialiang Li, 2018. "Semiparametric model average prediction in panel data analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 125-144, January.
    10. Gerda Claeskens, 2012. "Focused estimation and model averaging with penalization methods: an overview," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 272-287, August.
    11. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
    12. Fang, Fang & Li, Jialiang & Xia, Xiaochao, 2022. "Semiparametric model averaging prediction for dichotomous response," Journal of Econometrics, Elsevier, vol. 229(2), pages 219-245.
    13. Hai Wang & Xinjie Chen & Nancy Flournoy, 2016. "The focused information criterion for varying-coefficient partially linear measurement error models," Statistical Papers, Springer, vol. 57(1), pages 99-113, March.
    14. Mohammad Arashi & Priyanka Nagar & Andriette Bekker, 2020. "Joint Probabilistic Modeling of Wind Speed and Wind Direction for Wind Energy Analysis: A Case Study in Humansdorp and Noupoort," Sustainability, MDPI, vol. 12(11), pages 1-15, May.
    15. S. C. Pandhare & T. V. Ramanathan, 2020. "The robust focused information criterion for strong mixing stochastic processes with $$\mathscr {L}^{2}$$ L 2 -differentiable parametric densities," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 637-663, October.
    16. Maity, Arnab, 2008. "Efficient estimation of population quantiles in general semiparametric regression models," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2744-2750, November.
    17. Liu, Lian, 2007. "Estimation of generalized partially linear models with measurement error using sufficiency scores," Statistics & Probability Letters, Elsevier, vol. 77(15), pages 1580-1588, September.
    18. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    19. Xu Cheng & Zhipeng Liao & Ruoyao Shi, 2013. "Uniform Asymptotic Risk of Averaging GMM Estimator Robust to Misspecification, Second Version," PIER Working Paper Archive 15-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Mar 2015.
    20. Zhang, Qingzhao & Duan, Xiaogang & Ma, Shuangge, 2017. "Focused information criterion and model averaging with generalized rank regression," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 11-19.
    21. S. Hossain & S. Ejaz Ahmed & Grace Y. Yi & B. Chen, 2016. "Shrinkage and pretest estimators for longitudinal data analysis under partially linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 531-549, September.
    22. Ruoyao Shi & Zhipeng Liao, 2018. "An Averaging GMM Estimator Robust to Misspecification," Working Papers 201803, University of California at Riverside, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:94:y:2007:i:2:p:249-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.