IDEAS home Printed from
   My bibliography  Save this article

Covariate-adjusted regression


  • Damla Şenturk
  • Hans-Georg Muller


We introduce covariate-adjusted regression for situations where both predictors and response in a regression model are not directly observable, but are contaminated with a multiplicative factor that is determined by the value of an unknown function of an observable covariate. We demonstrate how the regression coefficients can be estimated by establishing a connection to varying-coefficient regression. The proposed covariate-adjustment method is illustrated with an analysis of the regression of plasma fibrinogen concentration as response on serum transferrin level as predictor for 69 haemodialysis patients. In this example, both response and predictor are thought to be influenced in a multiplicative fashion by body mass index. A bootstrap hypothesis test enables us to test the significance of the regression parameters. We establish consistency and convergence rates of the parameter estimators for this new covariate-adjusted regression model. Simulation studies demonstrate the efficacy of the proposed method. Copyright 2005, Oxford University Press.

Suggested Citation

  • Damla Şenturk & Hans-Georg Muller, 2005. "Covariate-adjusted regression," Biometrika, Biometrika Trust, vol. 92(1), pages 75-89, March.
  • Handle: RePEc:oup:biomet:v:92:y:2005:i:1:p:75-89

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Banerjee Anurag & Pitarakis Jean-Yves, 2014. "Functional cointegration: definition and nonparametric estimation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 1-14, December.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:92:y:2005:i:1:p:75-89. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.