IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v102y2015i4p797-807..html
   My bibliography  Save this article

Direct estimation of the mean outcome on treatment when treatment assignment and discontinuation compete

Author

Listed:
  • Xin Lu
  • Brent A. Johnson

Abstract

Several authors have investigated the challenges of statistical analyses and inference in the presence of early treatment termination, including a loss of efficiency in randomized controlled trials and a connection to dynamic regimes in observational studies. Popular estimation strategies for causal estimands in dynamic regimes lend themselves to studies where treatment is assigned at a finite number of points and the extension to continuous treatment assignment is nontrivial. We re-examine this from a different perspective and propose a new estimator for the mean outcome of a target treatment length policy that does not involve a treatment model. Because this strategy avoids modelling the treatment assignment mechanism, the estimator works for both discrete and continuous treatment length data and eschews bias and imprecision that arise as a result of coarsening continuous time data into intervals. We show how the competition of treatment length assignment and terminating event lead to a competing risks problem. We exemplify the direct estimator through numerical studies and the analysis of two real datasets. When all modelling assumptions for both the direct and inverse weighted estimators are correct, our simulation studies suggest that the direct estimator is more precise.

Suggested Citation

  • Xin Lu & Brent A. Johnson, 2015. "Direct estimation of the mean outcome on treatment when treatment assignment and discontinuation compete," Biometrika, Biometrika Trust, vol. 102(4), pages 797-807.
  • Handle: RePEc:oup:biomet:v:102:y:2015:i:4:p:797-807.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asv043
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    2. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Lu & Brent A. Johnson, 2017. "Direct estimation for adaptive treatment length policies: Methods and application to evaluating the effect of delayed PEG insertion," Biometrics, The International Biometric Society, vol. 73(3), pages 981-989, September.
    2. Sun Hao & Ertefaie Ashkan & Lu Xin & Johnson Brent A., 2020. "Improved Doubly Robust Estimation in Marginal Mean Models for Dynamic Regimes," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 300-314, January.
    3. Hao Sun & Ashkan Ertefaie & Brent A. Johnson, 2022. "Estimating mean potential outcome under adaptive treatment length strategies in continuous time," Biometrics, The International Biometric Society, vol. 78(4), pages 1503-1514, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Kun Ho & Chao, Shih-Kang & Härdle, Wolfgang Karl, 2020. "Simultaneous Inference of the Partially Linear Model with a Multivariate Unknown Function," IRTG 1792 Discussion Papers 2020-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. Dette, Holger & Marchlewski, Mareen, 2007. "A test for the parametric form of the variance function in apartial linear regression model," Technical Reports 2007,26, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Cui, Xia & Lu, Ying & Peng, Heng, 2017. "Estimation of partially linear regression models under the partial consistency property," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 103-121.
    5. Yuejin Zhou & Yebin Cheng & Wenlin Dai & Tiejun Tong, 2018. "Optimal difference-based estimation for partially linear models," Computational Statistics, Springer, vol. 33(2), pages 863-885, June.
    6. Zhu, Xuehu & Wang, Tao & Zhao, Junlong & Zhu, Lixing, 2017. "Inference for biased transformation models," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 105-120.
    7. Kim, Namhyun & W. Saart, Patrick, 2021. "Estimation in partially linear semiparametric models with parametric and/or nonparametric endogeneity," Cardiff Economics Working Papers E2021/9, Cardiff University, Cardiff Business School, Economics Section.
    8. Lu Lin & Lili Liu & Xia Cui & Kangning Wang, 2021. "A generalized semiparametric regression and its efficient estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 1-24, March.
    9. Aifen Feng & Xiaogai Chang & Jingya Fan & Zhengfen Jin, 2023. "Application of LADMM and As-LADMM for a High-Dimensional Partially Linear Model," Mathematics, MDPI, vol. 11(19), pages 1-14, October.
    10. B. Ettinger & S. Perotto & L. M. Sangalli, 2016. "Spatial regression models over two-dimensional manifolds," Biometrika, Biometrika Trust, vol. 103(1), pages 71-88.
    11. Lian, Heng & Liang, Hua, 2016. "Separation of linear and index covariates in partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 56-70.
    12. Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
    13. Huang, Zhensheng & Pang, Zhen & Hu, Tao, 2013. "Testing structural change in partially linear single-index models with error-prone linear covariates," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 121-133.
    14. Mou, Xichen & Wang, Dewei, 2024. "Additive partially linear model for pooled biomonitoring data," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    15. Zhang, Jun & Feng, Zhenghui & Peng, Heng, 2018. "Estimation and hypothesis test for partial linear multiplicative models," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 87-103.
    16. Wang, Xiuli & Zhao, Shengli & Wang, Mingqiu, 2017. "Restricted profile estimation for partially linear models with large-dimensional covariates," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 71-76.
    17. Graciela Boente & Daniela Rodriguez & Pablo Vena, 2020. "Robust estimators in a generalized partly linear regression model under monotony constraints," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 50-89, March.
    18. Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
    19. Q. Shao, 2009. "Seasonality analysis of time series in partial linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 827-837.
    20. M. Arashi & Mahdi Roozbeh, 2019. "Some improved estimation strategies in high-dimensional semiparametric regression models with application to riboflavin production data," Statistical Papers, Springer, vol. 60(3), pages 667-686, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:102:y:2015:i:4:p:797-807.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.