IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v593y2021i7857d10.1038_s41586-021-03471-w.html
   My bibliography  Save this article

Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma

Author

Listed:
  • Sandile Cele

    (Africa Health Research Institute
    University of KwaZulu–Natal)

  • Inbal Gazy

    (University of KwaZulu–Natal
    University of KwaZulu–Natal
    The Hebrew University of Jerusalem)

  • Laurelle Jackson

    (Africa Health Research Institute)

  • Shi-Hsia Hwa

    (Africa Health Research Institute
    University College London)

  • Houriiyah Tegally

    (University of KwaZulu–Natal)

  • Gila Lustig

    (Centre for the AIDS Programme of Research in South Africa (CAPRISA))

  • Jennifer Giandhari

    (University of KwaZulu–Natal)

  • Sureshnee Pillay

    (University of KwaZulu–Natal)

  • Eduan Wilkinson

    (University of KwaZulu–Natal)

  • Yeshnee Naidoo

    (University of KwaZulu–Natal)

  • Farina Karim

    (Africa Health Research Institute
    University of KwaZulu–Natal)

  • Yashica Ganga

    (Africa Health Research Institute)

  • Khadija Khan

    (Africa Health Research Institute)

  • Mallory Bernstein

    (Africa Health Research Institute)

  • Alejandro B. Balazs

    (Ragon Institute of MGH, Harvard and MIT)

  • Bernadett I. Gosnell

    (University of KwaZulu–Natal)

  • Willem Hanekom

    (Africa Health Research Institute
    University College London)

  • Mahomed-Yunus S. Moosa

    (University of KwaZulu–Natal)

  • Richard J. Lessells

    (University of KwaZulu–Natal
    Centre for the AIDS Programme of Research in South Africa (CAPRISA))

  • Tulio Oliveira

    (University of KwaZulu–Natal
    Centre for the AIDS Programme of Research in South Africa (CAPRISA)
    University of Washington)

  • Alex Sigal

    (Africa Health Research Institute
    University of KwaZulu–Natal
    Max Planck Institute for Infection Biology)

Abstract

SARS-CoV-2 variants of concern (VOC) have arisen independently at multiple locations1,2 and may reduce the efficacy of current vaccines that target the spike glycoprotein of SARS-CoV-23. Here, using a live-virus neutralization assay, we compared the neutralization of a non-VOC variant with the 501Y.V2 VOC (also known as B.1.351) using plasma collected from adults who were hospitalized with COVID-19 during the two waves of infection in South Africa, the second wave of which was dominated by infections with the 501Y.V2 variant. Sequencing demonstrated that infections of plasma donors from the first wave were with viruses that did not contain the mutations associated with 501Y.V2, except for one infection that contained the E484K substitution in the receptor-binding domain. The 501Y.V2 virus variant was effectively neutralized by plasma from individuals who were infected during the second wave. The first-wave virus variant was effectively neutralized by plasma from first-wave infections. However, the 501Y.V2 variant was poorly cross-neutralized by plasma from individuals with first-wave infections; the efficacy was reduced by 15.1-fold relative to neutralization of 501Y.V2 by plasma from individuals infected in the second wave. By contrast, cross-neutralization of first-wave virus variants using plasma from individuals with second-wave infections was more effective, showing only a 2.3-fold decrease relative to neutralization of first-wave virus variants by plasma from individuals infected in the first wave. Although we tested only one plasma sample from an individual infected with a SARS-CoV-2 variant with only the E484K substitution, this plasma sample potently neutralized both variants. The observed effective neutralization of first-wave virus by plasma from individuals infected with 501Y.V2 provides preliminary evidence that vaccines based on VOC sequences could retain activity against other circulating SARS-CoV-2 lineages.

Suggested Citation

  • Sandile Cele & Inbal Gazy & Laurelle Jackson & Shi-Hsia Hwa & Houriiyah Tegally & Gila Lustig & Jennifer Giandhari & Sureshnee Pillay & Eduan Wilkinson & Yeshnee Naidoo & Farina Karim & Yashica Ganga , 2021. "Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma," Nature, Nature, vol. 593(7857), pages 142-146, May.
  • Handle: RePEc:nat:nature:v:593:y:2021:i:7857:d:10.1038_s41586-021-03471-w
    DOI: 10.1038/s41586-021-03471-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03471-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03471-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khadija Khan & Farina Karim & Yashica Ganga & Mallory Bernstein & Zesuliwe Jule & Kajal Reedoy & Sandile Cele & Gila Lustig & Daniel Amoako & Nicole Wolter & Natasha Samsunder & Aida Sivro & James Emm, 2022. "Omicron BA.4/BA.5 escape neutralizing immunity elicited by BA.1 infection," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Krishna P. Reddy & Kieran P. Fitzmaurice & Justine A. Scott & Guy Harling & Richard J. Lessells & Christopher Panella & Fatma M. Shebl & Kenneth A. Freedberg & Mark J. Siedner, 2021. "Clinical outcomes and cost-effectiveness of COVID-19 vaccination in South Africa," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Wanbo Tai & Shengyong Feng & Benjie Chai & Shuaiyao Lu & Guangyu Zhao & Dong Chen & Wenhai Yu & Liting Ren & Huicheng Shi & Jing Lu & Zhuming Cai & Mujia Pang & Xu Tan & Penghua Wang & Jinzhong Lin & , 2023. "An mRNA-based T-cell-inducing antigen strengthens COVID-19 vaccine against SARS-CoV-2 variants," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Julia T. Castro & Patrick Azevedo & Marcílio J. Fumagalli & Natalia S. Hojo-Souza & Natalia Salazar & Gregório G. Almeida & Livia I. Oliveira & Lídia Faustino & Lis R. Antonelli & Tomas G. Marçal & Ma, 2022. "Promotion of neutralizing antibody-independent immunity to wild-type and SARS-CoV-2 variants of concern using an RBD-Nucleocapsid fusion protein," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Farina Karim & Catherine Riou & Mallory Bernstein & Zesuliwe Jule & Gila Lustig & Strauss Graan & Roanne S. Keeton & Janine-Lee Upton & Yashica Ganga & Khadija Khan & Kajal Reedoy & Matilda Mazibuko &, 2024. "Clearance of persistent SARS-CoV-2 associates with increased neutralizing antibodies in advanced HIV disease post-ART initiation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. X. Tong & R. P. McNamara & M. J. Avendaño & E. F. Serrano & T. García-Salum & C. Pardo-Roa & H. L. Bertera & T. M. Chicz & J. Levican & E. Poblete & E. Salinas & A. Muñoz & A. Riquelme & G. Alter & R., 2023. "Waning and boosting of antibody Fc-effector functions upon SARS-CoV-2 vaccination," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Leo Hanke & Hrishikesh Das & Daniel J. Sheward & Laura Perez Vidakovics & Egon Urgard & Ainhoa Moliner-Morro & Changil Kim & Vivien Karl & Alec Pankow & Natalie L. Smith & Bartlomiej Porebski & Oscar , 2022. "A bispecific monomeric nanobody induces spike trimer dimers and neutralizes SARS-CoV-2 in vivo," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Mark Chernyshev & Mrunal Sakharkar & Ruth I. Connor & Haley L. Dugan & Daniel J. Sheward & C. G. Rappazzo & Aron Stålmarck & Mattias N. E. Forsell & Peter F. Wright & Martin Corcoran & Ben Murrell & L, 2023. "Vaccination of SARS-CoV-2-infected individuals expands a broad range of clonally diverse affinity-matured B cell lineages," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Sebastian Weigang & Jonas Fuchs & Gert Zimmer & Daniel Schnepf & Lisa Kern & Julius Beer & Hendrik Luxenburger & Jakob Ankerhold & Valeria Falcone & Janine Kemming & Maike Hofmann & Robert Thimme & Ch, 2021. "Within-host evolution of SARS-CoV-2 in an immunosuppressed COVID-19 patient as a source of immune escape variants," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    10. Scotland E. Farley & Jennifer E. Kyle & Hans C. Leier & Lisa M. Bramer & Jules B. Weinstein & Timothy A. Bates & Joon-Yong Lee & Thomas O. Metz & Carsten Schultz & Fikadu G. Tafesse, 2022. "A global lipid map reveals host dependency factors conserved across SARS-CoV-2 variants," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Pengcheng Han & Chao Su & Yanfang Zhang & Chongzhi Bai & Anqi Zheng & Chengpeng Qiao & Qing Wang & Sheng Niu & Qian Chen & Yuqin Zhang & Weiwei Li & Hanyi Liao & Jing Li & Zengyuan Zhang & Heecheol Ch, 2021. "Molecular insights into receptor binding of recent emerging SARS-CoV-2 variants," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    12. Adam Abdullahi & David Oladele & Michael Owusu & Steven A. Kemp & James Ayorinde & Abideen Salako & Douglas Fink & Fehintola Ige & Isabella A. T. M. Ferreira & Bo Meng & Augustina Angelina Sylverken &, 2022. "SARS-COV-2 antibody responses to AZD1222 vaccination in West Africa," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:593:y:2021:i:7857:d:10.1038_s41586-021-03471-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.