IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v590y2021i7844d10.1038_s41586-020-03167-7.html
   My bibliography  Save this article

Developing fibrillated cellulose as a sustainable technological material

Author

Listed:
  • Tian Li

    (University of Maryland
    University of Maryland)

  • Chaoji Chen

    (University of Maryland
    University of Maryland)

  • Alexandra H. Brozena

    (University of Maryland)

  • J. Y. Zhu

    (USDA Forest Products Laboratory)

  • Lixian Xu

    (Sappi Biotech)

  • Carlos Driemeier

    (Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM))

  • Jiaqi Dai

    (Inventwood LLC)

  • Orlando J. Rojas

    (The University of British Columbia
    Aalto University)

  • Akira Isogai

    (The University of Tokyo)

  • Lars Wågberg

    (KTH Royal Institute of Technology)

  • Liangbing Hu

    (University of Maryland
    University of Maryland)

Abstract

Cellulose is the most abundant biopolymer on Earth, found in trees, waste from agricultural crops and other biomass. The fibres that comprise cellulose can be broken down into building blocks, known as fibrillated cellulose, of varying, controllable dimensions that extend to the nanoscale. Fibrillated cellulose is harvested from renewable resources, so its sustainability potential combined with its other functional properties (mechanical, optical, thermal and fluidic, for example) gives this nanomaterial unique technological appeal. Here we explore the use of fibrillated cellulose in the fabrication of materials ranging from composites and macrofibres, to thin films, porous membranes and gels. We discuss research directions for the practical exploitation of these structures and the remaining challenges to overcome before fibrillated cellulose materials can reach their full potential. Finally, we highlight some key issues towards successful manufacturing scale-up of this family of materials.

Suggested Citation

  • Tian Li & Chaoji Chen & Alexandra H. Brozena & J. Y. Zhu & Lixian Xu & Carlos Driemeier & Jiaqi Dai & Orlando J. Rojas & Akira Isogai & Lars Wågberg & Liangbing Hu, 2021. "Developing fibrillated cellulose as a sustainable technological material," Nature, Nature, vol. 590(7844), pages 47-56, February.
  • Handle: RePEc:nat:nature:v:590:y:2021:i:7844:d:10.1038_s41586-020-03167-7
    DOI: 10.1038/s41586-020-03167-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-03167-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-03167-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nathana L. Cristofoli & Alexandre R. Lima & Rose D. N. Tchonkouang & Andreia C. Quintino & Margarida C. Vieira, 2023. "Advances in the Food Packaging Production from Agri-Food Waste and By-Products: Market Trends for a Sustainable Development," Sustainability, MDPI, vol. 15(7), pages 1-33, April.
    2. Kentaro Tsubouchi & Yuta Tsukaguchi & Takeshi Shimizu & Hirofumi Yoshikawa & Ei-ichi Hino & Yusuke Date & Kaoru Aoki & Naoki Tanifuji, 2024. "Fabrication of Functional Gypsum Boards Using Waste Eggshells to Prevent Sick Building Syndrome," Sustainability, MDPI, vol. 16(7), pages 1-13, April.
    3. David Ibarra & Raquel Martín-Sampedro & Laura Jiménez-López & Juan A. Martín & Manuel J. Díaz & María E. Eugenio, 2021. "Obtaining Fermentable Sugars from a Highly Productive Elm Clone Using Different Pretreatments," Energies, MDPI, vol. 14(9), pages 1-21, April.
    4. Zhu, J.Y. & Pan, Xuejun, 2022. "Efficient sugar production from plant biomass: Current status, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    5. Zhou, Qiaoqiao & Liu, Zhenyu & Wu, Ta Yeong & Zhang, Lian, 2023. "Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    6. Piradee Jusakulvijit & Alberto Bezama & Daniela Thrän, 2022. "An Integrated Assessment of GIS-MCA with Logistics Analysis for an Assessment of a Potential Decentralized Bioethanol Production System Using Distributed Agricultural Residues in Thailand," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
    7. Delon Konan & Ekoun Koffi & Adama Ndao & Eric Charles Peterson & Denis Rodrigue & Kokou Adjallé, 2022. "An Overview of Extrusion as a Pretreatment Method of Lignocellulosic Biomass," Energies, MDPI, vol. 15(9), pages 1-25, April.
    8. Mohammad Peydayesh, 2024. "Sustainable Materials via the Assembly of Biopolymeric Nanobuilding Blocks Valorized from Agri-Food Waste," Sustainability, MDPI, vol. 16(3), pages 1-11, February.
    9. Negrão, Djanira R. & Grandis, Adriana & Buckeridge, Marcos S. & Rocha, George J.M. & Leal, Manoel Regis L.V. & Driemeier, Carlos, 2021. "Inorganics in sugarcane bagasse and straw and their impacts for bioenergy and biorefining: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:590:y:2021:i:7844:d:10.1038_s41586-020-03167-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.