IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v588y2020i7836d10.1038_s41586-020-2970-9.html
   My bibliography  Save this article

Unconventional ferroelectricity in moiré heterostructures

Author

Listed:
  • Zhiren Zheng

    (Massachusetts Institute of Technology)

  • Qiong Ma

    (Massachusetts Institute of Technology
    Boston College)

  • Zhen Bi

    (Massachusetts Institute of Technology)

  • Sergio Barrera

    (Massachusetts Institute of Technology)

  • Ming-Hao Liu

    (National Cheng Kung University)

  • Nannan Mao

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Yang Zhang

    (Massachusetts Institute of Technology)

  • Natasha Kiper

    (Massachusetts Institute of Technology)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Jing Kong

    (Massachusetts Institute of Technology)

  • William A. Tisdale

    (Massachusetts Institute of Technology)

  • Ray Ashoori

    (Massachusetts Institute of Technology)

  • Nuh Gedik

    (Massachusetts Institute of Technology)

  • Liang Fu

    (Massachusetts Institute of Technology)

  • Su-Yang Xu

    (Massachusetts Institute of Technology
    Harvard University)

  • Pablo Jarillo-Herrero

    (Massachusetts Institute of Technology)

Abstract

The constituent particles of matter can arrange themselves in various ways, giving rise to emergent phenomena that can be surprisingly rich and often cannot be understood by studying only the individual constituents. Discovering and understanding the emergence of such phenomena in quantum materials—especially those in which multiple degrees of freedom or energy scales are delicately balanced—is of fundamental interest to condensed-matter research1,2. Here we report on the surprising observation of emergent ferroelectricity in graphene-based moiré heterostructures. Ferroelectric materials show electrically switchable electric dipoles, which are usually formed by spatial separation between the average centres of positive and negative charge within the unit cell. On this basis, it is difficult to imagine graphene—a material composed of only carbon atoms—exhibiting ferroelectricity3. However, in this work we realize switchable ferroelectricity in Bernal-stacked bilayer graphene sandwiched between two hexagonal boron nitride layers. By introducing a moiré superlattice potential (via aligning bilayer graphene with the top and/or bottom boron nitride crystals), we observe prominent and robust hysteretic behaviour of the graphene resistance with an externally applied out-of-plane displacement field. Our systematic transport measurements reveal a rich and striking response as a function of displacement field and electron filling, and beyond the framework of conventional ferroelectrics. We further directly probe the ferroelectric polarization through a non-local monolayer graphene sensor. Our results suggest an unconventional, odd-parity electronic ordering in the bilayer graphene/boron nitride moiré system. This emergent moiré ferroelectricity may enable ultrafast, programmable and atomically thin carbon-based memory devices.

Suggested Citation

  • Zhiren Zheng & Qiong Ma & Zhen Bi & Sergio Barrera & Ming-Hao Liu & Nannan Mao & Yang Zhang & Natasha Kiper & Kenji Watanabe & Takashi Taniguchi & Jing Kong & William A. Tisdale & Ray Ashoori & Nuh Ge, 2020. "Unconventional ferroelectricity in moiré heterostructures," Nature, Nature, vol. 588(7836), pages 71-76, December.
  • Handle: RePEc:nat:nature:v:588:y:2020:i:7836:d:10.1038_s41586-020-2970-9
    DOI: 10.1038/s41586-020-2970-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2970-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2970-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zihan Liang & Xin Zhou & Le Zhang & Xiang-Long Yu & Yan Lv & Xuefen Song & Yongheng Zhou & Han Wang & Shuo Wang & Taihong Wang & Perry Ping Shum & Qian He & Yanjun Liu & Chao Zhu & Lin Wang & Xiaolong, 2023. "Strong bulk photovoltaic effect in engineered edge-embedded van der Waals structures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Hao Chen & Arpit Arora & Justin C. W. Song & Kian Ping Loh, 2023. "Gate-tunable anomalous Hall effect in Bernal tetralayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    3. Pratap Chandra Adak & Subhajit Sinha & Debasmita Giri & Dibya Kanti Mukherjee & Chandan & L. D. Varma Sangani & Surat Layek & Ayshi Mukherjee & Kenji Watanabe & Takashi Taniguchi & H. A. Fertig & Arij, 2022. "Perpendicular electric field drives Chern transitions and layer polarization changes in Hofstadter bands," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Luying Song & Ying Zhao & Bingqian Xu & Ruofan Du & Hui Li & Wang Feng & Junbo Yang & Xiaohui Li & Zijia Liu & Xia Wen & Yanan Peng & Yuzhu Wang & Hang Sun & Ling Huang & Yulin Jiang & Yao Cai & Xue J, 2024. "Robust multiferroic in interfacial modulation synthesized wafer-scale one-unit-cell of chromium sulfide," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Daniel Bennett & Gaurav Chaudhary & Robert-Jan Slager & Eric Bousquet & Philippe Ghosez, 2023. "Polar meron-antimeron networks in strained and twisted bilayers," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Yue Niu & Lei Li & Zhiying Qi & Hein Htet Aung & Xinyi Han & Reshef Tenne & Yugui Yao & Alla Zak & Yao Guo, 2023. "0D van der Waals interfacial ferroelectricity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Trithep Devakul & Valentin Crépel & Yang Zhang & Liang Fu, 2021. "Magic in twisted transition metal dichalcogenide bilayers," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Ming Lv & Jiulong Wang & Ming Tian & Neng Wan & Wenyi Tong & Chungang Duan & Jiamin Xue, 2024. "Multiresistance states in ferro- and antiferroelectric trilayer boron nitride," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Shuai Zhang & Yang Liu & Zhiyuan Sun & Xinzhong Chen & Baichang Li & S. L. Moore & Song Liu & Zhiying Wang & S. E. Rossi & Ran Jing & Jordan Fonseca & Birui Yang & Yinming Shao & Chun-Ying Huang & Tak, 2023. "Visualizing moiré ferroelectricity via plasmons and nano-photocurrent in graphene/twisted-WSe2 structures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Ruirui Niu & Zhuoxian Li & Xiangyan Han & Zhuangzhuang Qu & Dongdong Ding & Zhiyu Wang & Qianling Liu & Tianyao Liu & Chunrui Han & Kenji Watanabe & Takashi Taniguchi & Menghao Wu & Qi Ren & Xueyun Wa, 2022. "Giant ferroelectric polarization in a bilayer graphene heterostructure," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Fengrui Sui & Min Jin & Yuanyuan Zhang & Ruijuan Qi & Yu-Ning Wu & Rong Huang & Fangyu Yue & Junhao Chu, 2023. "Sliding ferroelectricity in van der Waals layered γ-InSe semiconductor," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:588:y:2020:i:7836:d:10.1038_s41586-020-2970-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.