IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58720-7.html
   My bibliography  Save this article

Toward high-current-density and high-frequency graphene resonant tunneling transistors

Author

Listed:
  • Zihao Zhang

    (Southern University of Science and Technology)

  • Baoqing Zhang

    (Southern University of Science and Technology)

  • Yifei Zhang

    (Shandong University)

  • Yiming Wang

    (Shandong University)

  • Patrick Hays

    (Arizona State University)

  • Seth Ariel Tongay

    (Arizona State University)

  • Mingyang Wang

    (Shandong University)

  • Hecheng Han

    (Shandong University)

  • Hu Li

    (Shandong University)

  • Jiawei Zhang

    (Shandong University)

  • Aimin Song

    (Southern University of Science and Technology
    University of Manchester)

Abstract

Negative differential resistance (NDR), a peculiar electrical property in which current decreases with increasing voltage, is highly desirable for multivalued logic gates, memory devices, and oscillators. Recently, 2D quantum-tunneling NDR devices have attracted considerable attention because of the inherent atomically flat and dangling-bond-free surfaces of 2D materials. However, the low current density of 2D NDR devices limits their operating frequency to less than 2 MHz. In this study, graphene/hexagonal boron nitride (h-BN)/graphene resonant tunneling transistors (RTTs) were fabricated using graphene and h-BN barriers with different numbers of atomic layers, showing a mechanism enabling the observation of NDR in high current density devices. A triangular etching approach was proposed to suppress the effects of graphene–metal contact resistance and graphene sheet resistance, enabling pronounced NDR effect even in a 2D tunneling device with a single atomic layer h-BN barrier. A room-temperature peak current density up to 2700 μA/μm2 and operational frequencies up to 11 GHz were achieved, demonstrating the potential of 2D quantum NDR devices for applications in high-speed electronics.

Suggested Citation

  • Zihao Zhang & Baoqing Zhang & Yifei Zhang & Yiming Wang & Patrick Hays & Seth Ariel Tongay & Mingyang Wang & Hecheng Han & Hu Li & Jiawei Zhang & Aimin Song, 2025. "Toward high-current-density and high-frequency graphene resonant tunneling transistors," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58720-7
    DOI: 10.1038/s41467-025-58720-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58720-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58720-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaowei Wang & Chao Zhu & Ya Deng & Ruihuan Duan & Jieqiong Chen & Qingsheng Zeng & Jiadong Zhou & Qundong Fu & Lu You & Song Liu & James H. Edgar & Peng Yu & Zheng Liu, 2021. "Author Correction: Van der Waals engineering of ferroelectric heterostructures for long-retention memory," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    2. Shawulienu Kezilebieke & Md Nurul Huda & Viliam Vaňo & Markus Aapro & Somesh C. Ganguli & Orlando J. Silveira & Szczepan Głodzik & Adam S. Foster & Teemu Ojanen & Peter Liljeroth, 2020. "Topological superconductivity in a van der Waals heterostructure," Nature, Nature, vol. 588(7838), pages 424-428, December.
    3. Xiaowei Wang & Chao Zhu & Ya Deng & Ruihuan Duan & Jieqiong Chen & Qingsheng Zeng & Jiadong Zhou & Qundong Fu & Lu You & Song Liu & James H. Edgar & Peng Yu & Zheng Liu, 2021. "Van der Waals engineering of ferroelectric heterostructures for long-retention memory," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Zhiren Zheng & Qiong Ma & Zhen Bi & Sergio Barrera & Ming-Hao Liu & Nannan Mao & Yang Zhang & Natasha Kiper & Kenji Watanabe & Takashi Taniguchi & Jing Kong & William A. Tisdale & Ray Ashoori & Nuh Ge, 2020. "Unconventional ferroelectricity in moiré heterostructures," Nature, Nature, vol. 588(7836), pages 71-76, December.
    5. Yongxi Ou & Wilson Yanez & Run Xiao & Max Stanley & Supriya Ghosh & Boyang Zheng & Wei Jiang & Yu-Sheng Huang & Timothy Pillsbury & Anthony Richardella & Chaoxing Liu & Tony Low & Vincent H. Crespi & , 2022. "ZrTe2/CrTe2: an epitaxial van der Waals platform for spintronics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. L. Britnell & R. V. Gorbachev & A. K. Geim & L. A. Ponomarenko & A. Mishchenko & M. T. Greenaway & T. M. Fromhold & K. S. Novoselov & L. Eaves, 2013. "Resonant tunnelling and negative differential conductance in graphene transistors," Nature Communications, Nature, vol. 4(1), pages 1-5, June.
    7. Yu-Chuan Lin & Ram Krishna Ghosh & Rafik Addou & Ning Lu & Sarah M. Eichfeld & Hui Zhu & Ming-Yang Li & Xin Peng & Moon J. Kim & Lain-Jong Li & Robert M. Wallace & Suman Datta & Joshua A. Robinson, 2015. "Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Liu & Mingjian Zhang & Zhuan Wang & Jiandong He & Jie Zhang & Sheng Ye & Xiuli Wang & Dongfeng Li & Heng Yin & Qianhong Zhu & Huanwang Jing & Yuxiang Weng & Feng Pan & Ruotian Chen & Can Li & Fen, 2022. "Bipolar charge collecting structure enables overall water splitting on ferroelectric photocatalysts," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Xiuzhen Li & Biao Qin & Yaxian Wang & Yue Xi & Zhiheng Huang & Mengze Zhao & Yalin Peng & Zitao Chen & Zitian Pan & Jundong Zhu & Chenyang Cui & Rong Yang & Wei Yang & Sheng Meng & Dongxia Shi & Xuedo, 2024. "Sliding ferroelectric memories and synapses based on rhombohedral-stacked bilayer MoS2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Qingxuan Li & Siwei Wang & Zhenhai Li & Xuemeng Hu & Yongkai Liu & Jiajie Yu & Yafen Yang & Tianyu Wang & Jialin Meng & Qingqing Sun & David Wei Zhang & Lin Chen, 2024. "High-performance ferroelectric field-effect transistors with ultra-thin indium tin oxide channels for flexible and transparent electronics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Dongyang Yang & Jing Liang & Jingda Wu & Yunhuan Xiao & Jerry I. Dadap & Kenji Watanabe & Takashi Taniguchi & Ziliang Ye, 2024. "Non-volatile electrical polarization switching via domain wall release in 3R-MoS2 bilayer," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Kunpeng Si & Yifan Zhao & Peng Zhang & Xingguo Wang & Qianqian He & Juntian Wei & Bixuan Li & Yongxi Wang & Aiping Cao & Zhigao Hu & Peizhe Tang & Feng Ding & Yongji Gong, 2024. "Quasi-equilibrium growth of inch-scale single-crystal monolayer α-In2Se3 on fluor-phlogopite," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Sangyong Park & Dongyoung Lee & Juncheol Kang & Hojin Choi & Jin-Hong Park, 2023. "Laterally gated ferroelectric field effect transistor (LG-FeFET) using α-In2Se3 for stacked in-memory computing array," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Lei Liang & Er Pan & Guiming Cao & Jiangang Chen & Ruixue Wang & Biao Dong & Qing Liu & Xiong Chen & Xiao Luo & Yongfa Kong & Wenwu Li & Fucai Liu, 2025. "Configurable kinetics of polarization switching via ion migration in ferroionic CuInP2S6," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    8. Fengrui Sui & Yilun Yu & Ju Chen & Ruijuan Qi & Rui Ge & Yufan Zheng & Beituo Liu & Rong Jin & Shijing Gong & Fangyu Yue & Junhao Chu, 2025. "Unconventional (anti)ferroelectricity in van der Waals group-IV monochalcogenides," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    9. Junhyeon Jo & Yuan Peisen & Haozhe Yang & Samuel Mañas-Valero & José J. Baldoví & Yao Lu & Eugenio Coronado & Fèlix Casanova & F. Sebastian Bergeret & Marco Gobbi & Luis E. Hueso, 2023. "Local control of superconductivity in a NbSe2/CrSBr van der Waals heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Fanrong Lin & Xiaoyu Xuan & Zhonghan Cao & Zhuhua Zhang & Ying Liu & Minmin Xue & Yang Hang & Xin Liu & Yizhou Zhao & Libo Gao & Wanlin Guo & Yanpeng Liu, 2025. "Room temperature ferroelectricity in monolayer graphene sandwiched between hexagonal boron nitride," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    11. Hang Chi & Yunbo Ou & Tim B. Eldred & Wenpei Gao & Sohee Kwon & Joseph Murray & Michael Dreyer & Robert E. Butera & Alexandre C. Foucher & Haile Ambaye & Jong Keum & Alice T. Greenberg & Yuhang Liu & , 2023. "Strain-tunable Berry curvature in quasi-two-dimensional chromium telluride," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Siqi Jiang & Renjun Du & Jiawei Jiang & Gan Liu & Jiabei Huang & Yu Du & Yaqing Han & Jingkuan Xiao & Di Zhang & Fuzhuo Lian & Wanting Xu & Siqin Wang & Lei Qiao & Kenji Watanabe & Takashi Taniguchi &, 2025. "The interplay of ferroelectricity and magneto-transport in non-magnetic moiré superlattices," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    13. Lucas Schneider & Philip Beck & Levente Rózsa & Thore Posske & Jens Wiebe & Roland Wiesendanger, 2023. "Probing the topologically trivial nature of end states in antiferromagnetic atomic chains on superconductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Chan-young Lim & Min-Seok Kim & Dong Cheol Lim & Sunghun Kim & Yeonghoon Lee & Jaehoon Cha & Gyubin Lee & Sang Yong Song & Dinesh Thapa & Jonathan D. Denlinger & Seong-Gon Kim & Sung Wng Kim & Jungpil, 2024. "Topological Fermi-arc surface state covered by floating electrons on a two-dimensional electride," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Fengrui Sui & Min Jin & Yuanyuan Zhang & Ruijuan Qi & Yu-Ning Wu & Rong Huang & Fangyu Yue & Junhao Chu, 2023. "Sliding ferroelectricity in van der Waals layered γ-InSe semiconductor," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Kai Fan & Heng Jin & Bing Huang & Guijing Duan & Rong Yu & Zhen-Yu Liu & Hui-Nan Xia & Li-Si Liu & Yao Zhang & Tao Xie & Qiao-Yin Tang & Gang Chen & Wen-Hao Zhang & F. C. Chen & X. Luo & W. J. Lu & Y., 2024. "Artificial superconducting Kondo lattice in a van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Trithep Devakul & Valentin Crépel & Yang Zhang & Liang Fu, 2021. "Magic in twisted transition metal dichalcogenide bilayers," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    19. Jing Ding & Hanxiao Xiang & Wenqiang Zhou & Naitian Liu & Qianmei Chen & Xinjie Fang & Kangyu Wang & Linfeng Wu & Kenji Watanabe & Takashi Taniguchi & Na Xin & Shuigang Xu, 2024. "Engineering band structures of two-dimensional materials with remote moiré ferroelectricity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Lun-Hui Hu & Rui-Xing Zhang, 2023. "Topological superconducting vortex from trivial electronic bands," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58720-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.