IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57035-x.html
   My bibliography  Save this article

Parafermions in moiré minibands

Author

Listed:
  • Hui Liu

    (Stockholm University)

  • Raul Perea-Causin

    (Stockholm University)

  • Emil J. Bergholtz

    (Stockholm University)

Abstract

Moiré materials provide a remarkably tunable platform for topological and strongly correlated quantum phases of matter. Very recently, the first Abelian fractional Chern insulators (FCIs) at zero magnetic field have been experimentally demonstrated, and it has been theoretically predicted that non-Abelian states with Majorana fermion excitations may be realized in the nearly dispersionless minibands of these systems. Here, we provide telltale evidence based on many-body exact diagonalization for the even more exotic possibility of moiré-based non-Abelian FCIs exhibiting Fibonacci parafermion excitations. In particular, we obtain low-energy quantum numbers, spectral flow, many-body Chern numbers, and entanglement spectra consistent with the $${{\mathbb{Z}}}_{3}$$ Z 3 Read–Rezayi parafermion phase in an exemplary moiré system with tunable quantum geometry. Our results hint towards the robustness of moiré-based parafermions and encourage the pursuit in moiré systems of these non-Abelian quasiparticles that are superior candidates for topological quantum computing.

Suggested Citation

  • Hui Liu & Raul Perea-Causin & Emil J. Bergholtz, 2025. "Parafermions in moiré minibands," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57035-x
    DOI: 10.1038/s41467-025-57035-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57035-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57035-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Trithep Devakul & Valentin Crépel & Yang Zhang & Liang Fu, 2021. "Magic in twisted transition metal dichalcogenide bilayers," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Yonglong Xie & Andrew T. Pierce & Jeong Min Park & Daniel E. Parker & Eslam Khalaf & Patrick Ledwith & Yuan Cao & Seung Hwan Lee & Shaowen Chen & Patrick R. Forrester & Kenji Watanabe & Takashi Tanigu, 2021. "Fractional Chern insulators in magic-angle twisted bilayer graphene," Nature, Nature, vol. 600(7889), pages 439-443, December.
    3. Heonjoon Park & Jiaqi Cai & Eric Anderson & Yinong Zhang & Jiayi Zhu & Xiaoyu Liu & Chong Wang & William Holtzmann & Chaowei Hu & Zhaoyu Liu & Takashi Taniguchi & Kenji Watanabe & Jiun-Haw Chu & Ting , 2023. "Observation of fractionally quantized anomalous Hall effect," Nature, Nature, vol. 622(7981), pages 74-79, October.
    4. Zhengguang Lu & Tonghang Han & Yuxuan Yao & Aidan P. Reddy & Jixiang Yang & Junseok Seo & Kenji Watanabe & Takashi Taniguchi & Liang Fu & Long Ju, 2024. "Fractional quantum anomalous Hall effect in multilayer graphene," Nature, Nature, vol. 626(8000), pages 759-764, February.
    5. Jiaqi Cai & Eric Anderson & Chong Wang & Xiaowei Zhang & Xiaoyu Liu & William Holtzmann & Yinong Zhang & Fengren Fan & Takashi Taniguchi & Kenji Watanabe & Ying Ran & Ting Cao & Liang Fu & Di Xiao & W, 2023. "Signatures of fractional quantum anomalous Hall states in twisted MoTe2," Nature, Nature, vol. 622(7981), pages 63-68, October.
    6. M. Goerbig, 2012. "From fractional Chern insulators to a fractional quantum spin hall effect," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(1), pages 1-8, January.
    7. D.N. Sheng & Zheng-Cheng Gu & Kai Sun & L. Sheng, 2011. "Fractional quantum Hall effect in the absence of Landau levels," Nature Communications, Nature, vol. 2(1), pages 1-5, September.
    8. Zhiren Zheng & Qiong Ma & Zhen Bi & Sergio Barrera & Ming-Hao Liu & Nannan Mao & Yang Zhang & Natasha Kiper & Kenji Watanabe & Takashi Taniguchi & Jing Kong & William A. Tisdale & Ray Ashoori & Nuh Ge, 2020. "Unconventional ferroelectricity in moiré heterostructures," Nature, Nature, vol. 588(7836), pages 71-76, December.
    9. Tingxin Li & Shengwei Jiang & Bowen Shen & Yang Zhang & Lizhong Li & Zui Tao & Trithep Devakul & Kenji Watanabe & Takashi Taniguchi & Liang Fu & Jie Shan & Kin Fai Mak, 2021. "Quantum anomalous Hall effect from intertwined moiré bands," Nature, Nature, vol. 600(7890), pages 641-646, December.
    10. Yuan Cao & Valla Fatemi & Shiang Fang & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Pablo Jarillo-Herrero, 2018. "Unconventional superconductivity in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 43-50, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-Wei Zhang & Chong Wang & Xiaoyu Liu & Yueyao Fan & Ting Cao & Di Xiao, 2024. "Polarization-driven band topology evolution in twisted MoTe2 and WSe2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Jesse C. Hoke & Yifan Li & Julian May-Mann & Kenji Watanabe & Takashi Taniguchi & Barry Bradlyn & Taylor L. Hughes & Benjamin E. Feldman, 2024. "Uncovering the spin ordering in magic-angle graphene via edge state equilibration," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Eric A. Arsenault & Yiliu Li & Birui Yang & Takashi Taniguchi & Kenji Watanabe & James C. Hone & Cory R. Dean & Xiaodong Xu & X.-Y. Zhu, 2025. "Time-domain signatures of distinct correlated insulators in a moiré superlattice," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    4. Xirui Wang & Cheng Xu & Samuel Aronson & Daniel Bennett & Nisarga Paul & Philip J. D. Crowley & Clément Collignon & Kenji Watanabe & Takashi Taniguchi & Raymond Ashoori & Efthimios Kaxiras & Yang Zhan, 2025. "Moiré band structure engineering using a twisted boron nitride substrate," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    5. Richen Xiong & Samuel L. Brantly & Kaixiang Su & Jacob H. Nie & Zihan Zhang & Rounak Banerjee & Hayley Ruddick & Kenji Watanabe & Takashi Taniguchi & Seth Ariel Tongay & Cenke Xu & Chenhao Jin, 2024. "Tunable exciton valley-pseudospin orders in moiré superlattices," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Jing Ding & Hanxiao Xiang & Wenqiang Zhou & Naitian Liu & Qianmei Chen & Xinjie Fang & Kangyu Wang & Linfeng Wu & Kenji Watanabe & Takashi Taniguchi & Na Xin & Shuigang Xu, 2024. "Engineering band structures of two-dimensional materials with remote moiré ferroelectricity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Lei Chen & Fang Xie & Shouvik Sur & Haoyu Hu & Silke Paschen & Jennifer Cano & Qimiao Si, 2024. "Emergent flat band and topological Kondo semimetal driven by orbital-selective correlations," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Dacen Waters & Ruiheng Su & Ellis Thompson & Anna Okounkova & Esmeralda Arreguin-Martinez & Minhao He & Katherine Hinds & Kenji Watanabe & Takashi Taniguchi & Xiaodong Xu & Ya-Hui Zhang & Joshua Folk , 2024. "Topological flat bands in a family of multilayer graphene moiré lattices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Patrick Knüppel & Jiacheng Zhu & Yiyu Xia & Zhengchao Xia & Zhongdong Han & Yihang Zeng & Kenji Watanabe & Takashi Taniguchi & Jie Shan & Kin Fai Mak, 2025. "Correlated states controlled by a tunable van Hove singularity in moiré WSe2 bilayers," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    10. Wenqiang Zhou & Jing Ding & Jiannan Hua & Le Zhang & Kenji Watanabe & Takashi Taniguchi & Wei Zhu & Shuigang Xu, 2024. "Layer-polarized ferromagnetism in rhombohedral multilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Keshav Singh & Aaron Chew & Jonah Herzog-Arbeitman & B. Andrei Bernevig & Oskar Vafek, 2024. "Topological heavy fermions in magnetic field," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Anushree Datta & M. J. Calderón & A. Camjayi & E. Bascones, 2023. "Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Subhasis Samanta & Hwiwoo Park & Chanhyeon Lee & Sungmin Jeon & Hengbo Cui & Yong-Xin Yao & Jungseek Hwang & Kwang-Yong Choi & Heung-Sik Kim, 2024. "Emergence of flat bands and ferromagnetic fluctuations via orbital-selective electron correlations in Mn-based kagome metal," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Gal Shavit & Stevan Nadj-Perge & Gil Refael, 2025. "Ephemeral superconductivity atop the false vacuum," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    15. Emma C. Regan & Zheyu Lu & Danqing Wang & Yang Zhang & Trithep Devakul & Jacob H. Nie & Zuocheng Zhang & Wenyu Zhao & Kenji Watanabe & Takashi Taniguchi & Sefaattin Tongay & Alex Zettl & Liang Fu & Fe, 2024. "Spin transport of a doped Mott insulator in moiré heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    16. Jinjae Kim & Jiwon Park & Hyojin Choi & Taeho Kim & Soonyoung Cha & Yewon Lee & Kenji Watanabe & Takashi Taniguchi & Jonghwan Kim & Moon-Ho Jo & Hyunyong Choi, 2024. "Correlation-driven nonequilibrium exciton site transition in a WSe2/WS2 moiré supercell," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Ilia Komissarov & Tobias Holder & Raquel Queiroz, 2024. "The quantum geometric origin of capacitance in insulators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Sunghoon Kim & Juan Felipe Mendez-Valderrama & Xuepeng Wang & Debanjan Chowdhury, 2025. "Theory of correlated insulators and superconductor at ν = 1 in twisted WSe2," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    19. Lebing Chen & Xiaokun Teng & Hengxin Tan & Barry L. Winn & Garrett E. Granroth & Feng Ye & D. H. Yu & R. A. Mole & Bin Gao & Binghai Yan & Ming Yi & Pengcheng Dai, 2024. "Competing itinerant and local spin interactions in kagome metal FeGe," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Le Zhang & Jing Ding & Hanxiao Xiang & Naitian Liu & Wenqiang Zhou & Linfeng Wu & Na Xin & Kenji Watanabe & Takashi Taniguchi & Shuigang Xu, 2024. "Electronic ferroelectricity in monolayer graphene moiré superlattices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57035-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.