IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v577y2020i7789d10.1038_s41586-019-1880-1.html
   My bibliography  Save this article

Palaeoclimate evidence of vulnerable permafrost during times of low sea ice

Author

Listed:
  • A. Vaks

    (Geological Survey of Israel
    University of Oxford)

  • A. J. Mason

    (University of Oxford)

  • S. F. M. Breitenbach

    (Northumbria University)

  • A. M. Kononov

    (Siberian Branch)

  • A. V. Osinzev

    (Speleoclub Arabica)

  • M. Rosensaft

    (Geological Survey of Israel)

  • A. Borshevsky

    (Geological Survey of Israel)

  • O. S. Gutareva

    (Siberian Branch)

  • G. M. Henderson

    (University of Oxford)

Abstract

Climate change in the Arctic is occurring rapidly, and projections suggest the complete loss of summer sea ice by the middle of this century1. The sensitivity of permanently frozen ground (permafrost) in the Northern Hemisphere to warming is less clear, and its long-term trends are harder to monitor than those of sea ice. Here we use palaeoclimate data to show that Siberian permafrost is robust to warming when Arctic sea ice is present, but vulnerable when it is absent. Uranium–lead chronology of carbonate deposits (speleothems) in a Siberian cave located at the southern edge of continuous permafrost reveals periods in which the overlying ground was not permanently frozen. The speleothem record starts 1.5 million years ago (Ma), a time when greater equator-to-pole heat transport led to a warmer Northern Hemisphere2. The growth of the speleothems indicates that permafrost at the cave site was absent at that time, becoming more frequent from about 1.35 Ma, as the Northern Hemisphere cooled, and permanent after about 0.4 Ma. This history mirrors that of year-round sea ice in the Arctic Ocean, which was largely absent before about 0.4 Ma (ref. 3), but continuously present since that date. The robustness of permafrost when sea ice is present, as well as the increased permafrost vulnerability when sea ice is absent, can be explained by changes in both heat and moisture transport. Reduced sea ice may contribute to warming of Arctic air4–6, which can lead to warming far inland7. Open Arctic waters also increase the source of moisture and increase autumn snowfall over Siberia, insulating the ground from low winter temperatures8–10. These processes explain the relationship between an ice-free Arctic and permafrost thawing before 0.4 Ma. If these processes continue during modern climate change, future loss of summer Arctic sea ice will accelerate the thawing of Siberian permafrost.

Suggested Citation

  • A. Vaks & A. J. Mason & S. F. M. Breitenbach & A. M. Kononov & A. V. Osinzev & M. Rosensaft & A. Borshevsky & O. S. Gutareva & G. M. Henderson, 2020. "Palaeoclimate evidence of vulnerable permafrost during times of low sea ice," Nature, Nature, vol. 577(7789), pages 221-225, January.
  • Handle: RePEc:nat:nature:v:577:y:2020:i:7789:d:10.1038_s41586-019-1880-1
    DOI: 10.1038/s41586-019-1880-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1880-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1880-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diebold, Francis X. & Göbel, Maximilian & Goulet Coulombe, Philippe & Rudebusch, Glenn D. & Zhang, Boyuan, 2021. "Optimal combination of Arctic sea ice extent measures: A dynamic factor modeling approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1509-1519.
    2. Diebold, Francis X. & Rudebusch, Glenn D. & Göbel, Maximilian & Goulet Coulombe, Philippe & Zhang, Boyuan, 2023. "When will Arctic sea ice disappear? Projections of area, extent, thickness, and volume," Journal of Econometrics, Elsevier, vol. 236(2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:577:y:2020:i:7789:d:10.1038_s41586-019-1880-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.