IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v571y2019i7766d10.1038_s41586-019-1386-x.html
   My bibliography  Save this article

Resolving the energy levels of a nanomechanical oscillator

Author

Listed:
  • Patricio Arrangoiz-Arriola

    (Stanford University
    Stanford University)

  • E. Alex Wollack

    (Stanford University
    Stanford University)

  • Zhaoyou Wang

    (Stanford University
    Stanford University)

  • Marek Pechal

    (Stanford University
    Stanford University)

  • Wentao Jiang

    (Stanford University
    Stanford University)

  • Timothy P. McKenna

    (Stanford University
    Stanford University)

  • Jeremy D. Witmer

    (Stanford University
    Stanford University)

  • Raphaël Laer

    (Stanford University
    Stanford University)

  • Amir H. Safavi-Naeini

    (Stanford University
    Stanford University)

Abstract

The quantum nature of an oscillating mechanical object is anything but apparent. The coherent states that describe the classical motion of a mechanical oscillator do not have a well defined energy, but are quantum superpositions of equally spaced energy eigenstates. Revealing this quantized structure is only possible with an apparatus that measures energy with a precision greater than the energy of a single phonon. One way to achieve this sensitivity is by engineering a strong but nonresonant interaction between the oscillator and an atom. In a system with sufficient quantum coherence, this interaction allows one to distinguish different energy eigenstates using resolvable differences in the atom’s transition frequency. For photons, such dispersive measurements have been performed in cavity1,2 and circuit quantum electrodynamics3. Here we report an experiment in which an artificial atom senses the motional energy of a driven nanomechanical oscillator with sufficient sensitivity to resolve the quantization of its energy. To realize this, we build a hybrid platform that integrates nanomechanical piezoelectric resonators with a microwave superconducting qubit on the same chip. We excite phonons with resonant pulses and probe the resulting excitation spectrum of the qubit to observe phonon-number-dependent frequency shifts that are about five times larger than the qubit linewidth. Our result demonstrates a fully integrated platform for quantum acoustics that combines large couplings, considerable coherence times and excellent control over the mechanical mode structure. With modest experimental improvements, we expect that our approach will enable quantum nondemolition measurements of phonons4 and will lead to quantum sensors and information-processing approaches5 that use chip-scale nanomechanical devices.

Suggested Citation

  • Patricio Arrangoiz-Arriola & E. Alex Wollack & Zhaoyou Wang & Marek Pechal & Wentao Jiang & Timothy P. McKenna & Jeremy D. Witmer & Raphaël Laer & Amir H. Safavi-Naeini, 2019. "Resolving the energy levels of a nanomechanical oscillator," Nature, Nature, vol. 571(7766), pages 537-540, July.
  • Handle: RePEc:nat:nature:v:571:y:2019:i:7766:d:10.1038_s41586-019-1386-x
    DOI: 10.1038/s41586-019-1386-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1386-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1386-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juliane Doster & Tirth Shah & Thomas Fösel & Philipp Paulitschke & Florian Marquardt & Eva M. Weig, 2022. "Observing polarization patterns in the collective motion of nanomechanical arrays," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. He, Lipeng & Wang, Shuangjian & Liu, Renwen & Sun, Baoyu & Wang, Junlei & Lin, Jieqiong, 2023. "Design and research of a water energy piezoelectric energy harvester that changes the linear arrangement of magnet," Energy, Elsevier, vol. 284(C).
    4. J. M. Kitzman & J. R. Lane & C. Undershute & P. M. Harrington & N. R. Beysengulov & C. A. Mikolas & K. W. Murch & J. Pollanen, 2023. "Phononic bath engineering of a superconducting qubit," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Yannick Seis & Thibault Capelle & Eric Langman & Sampo Saarinen & Eric Planz & Albert Schliesser, 2022. "Ground state cooling of an ultracoherent electromechanical system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:571:y:2019:i:7766:d:10.1038_s41586-019-1386-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.