IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v566y2019i7744d10.1038_s41586-019-0929-5.html
   My bibliography  Save this article

Author Correction: GABAA receptor signalling mechanisms revealed by structural pharmacology

Author

Listed:
  • Simonas Masiulis

    (Cambridge Biomedical Campus)

  • Rooma Desai

    (Harvard Medical School)

  • Tomasz Uchański

    (Vrije Universiteit Brussel (VUB)
    VIB-VUB Center for Structural Biology, VIB)

  • Itziar Serna Martin

    (University of Oxford)

  • Duncan Laverty

    (Cambridge Biomedical Campus)

  • Dimple Karia

    (University of Oxford)

  • Tomas Malinauskas

    (University of Oxford)

  • Jasenko Zivanov

    (Cambridge Biomedical Campus)

  • Els Pardon

    (Vrije Universiteit Brussel (VUB)
    VIB-VUB Center for Structural Biology, VIB)

  • Abhay Kotecha

    (Materials and Structural Analysis, Thermo Fisher Scientific)

  • Jan Steyaert

    (Vrije Universiteit Brussel (VUB)
    VIB-VUB Center for Structural Biology, VIB)

  • Keith W. Miller

    (Harvard Medical School)

  • A. Radu Aricescu

    (Cambridge Biomedical Campus
    University of Oxford)

Abstract

In Fig. 5b, d, the arrows showing transmembrane domain rotations were inadvertently pointing clockwise instead of anticlockwise. Similarly, ‘anticlockwise’ should have been ‘clockwise’ in the sentence ‘This conformational change of the ECD triggers a clockwise rotation of the TMD.’ In Extended Data Table 1, the units of the column ‘Model resolution’ should have been Å instead of Å2. These errors have been corrected online.

Suggested Citation

  • Simonas Masiulis & Rooma Desai & Tomasz Uchański & Itziar Serna Martin & Duncan Laverty & Dimple Karia & Tomas Malinauskas & Jasenko Zivanov & Els Pardon & Abhay Kotecha & Jan Steyaert & Keith W. Mill, 2019. "Author Correction: GABAA receptor signalling mechanisms revealed by structural pharmacology," Nature, Nature, vol. 566(7744), pages 8-8, February.
  • Handle: RePEc:nat:nature:v:566:y:2019:i:7744:d:10.1038_s41586-019-0929-5
    DOI: 10.1038/s41586-019-0929-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-0929-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-0929-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heng Liu & Dapeng Sun & Alexander Myasnikov & Marjorie Damian & Jean-Louis Baneres & Ji Sun & Cheng Zhang, 2021. "Structural basis of human ghrelin receptor signaling by ghrelin and the synthetic agonist ibutamoren," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Nathan L. Absalom & Vivian W. Y. Liao & Katrine M. H. Johannesen & Elena Gardella & Julia Jacobs & Gaetan Lesca & Zeynep Gokce-Samar & Alexis Arzimanoglou & Shimriet Zeidler & Pasquale Striano & Pierr, 2022. "Gain-of-function and loss-of-function GABRB3 variants lead to distinct clinical phenotypes in patients with developmental and epileptic encephalopathies," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Arvind Kumar & Kayla Kindig & Shanlin Rao & Afroditi-Maria Zaki & Sandip Basak & Mark S. P. Sansom & Philip C. Biggin & Sudha Chakrapani, 2022. "Structural basis for cannabinoid-induced potentiation of alpha1-glycine receptors in lipid nanodiscs," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Vikram Dalal & Mark J. Arcario & John T. Petroff & Brandon K. Tan & Noah M. Dietzen & Michael J. Rau & James A. J. Fitzpatrick & Grace Brannigan & Wayland W. L. Cheng, 2024. "Lipid nanodisc scaffold and size alter the structure of a pentameric ligand-gated ion channel," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Dagimhiwat H. Legesse & Chen Fan & Jinfeng Teng & Yuxuan Zhuang & Rebecca J. Howard & Colleen M. Noviello & Erik Lindahl & Ryan E. Hibbs, 2023. "Structural insights into opposing actions of neurosteroids on GABAA receptors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Shaotong Zhu & Akshay Sridhar & Jinfeng Teng & Rebecca J. Howard & Erik Lindahl & Ryan E. Hibbs, 2022. "Structural and dynamic mechanisms of GABAA receptor modulators with opposing activities," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Marie S. Prevost & Nathalie Barilone & Gabrielle Dejean de la Bâtie & Stéphanie Pons & Gabriel Ayme & Patrick England & Marc Gielen & François Bontems & Gérard Pehau-Arnaudet & Uwe Maskos & Pierre , 2023. "An original potentiating mechanism revealed by the cryo-EM structures of the human α7 nicotinic receptor in complex with nanobodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Nikhil Bharambe & Zhuowen Li & David Seiferth & Asha Manikkoth Balakrishna & Philip C. Biggin & Sandip Basak, 2024. "Cryo-EM structures of prokaryotic ligand-gated ion channel GLIC provide insights into gating in a lipid environment," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:566:y:2019:i:7744:d:10.1038_s41586-019-0929-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.