IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61447-0.html
   My bibliography  Save this article

A single main-chain hydrogen bond required to keep GABAA receptors closed

Author

Listed:
  • Cecilia M. Borghese

    (University of Texas at Austin)

  • Jason D. Galpin

    (University of Iowa)

  • Samuel Eriksson Lidbrink

    (Stockholm University)

  • Yuxuan Zhuang

    (Stockholm University)

  • Netrang G. Desai

    (University of Texas at Austin)

  • Rebecca J. Howard

    (Stockholm University
    KTH Royal Institute of Technology)

  • Erik Lindahl

    (Stockholm University
    KTH Royal Institute of Technology)

  • Christopher A. Ahern

    (University of Iowa)

  • Marcel P. Goldschen-Ohm

    (University of Texas at Austin)

Abstract

GABAA receptors (GABAARs) are the primary inhibitory neurotransmitter receptors throughout the central nervous system. Genetic mutations causing their dysfunction are related to a broad spectrum of human disorders such as epilepsy, neurodevelopment and intellectual disability, autism spectrum disorder, schizophrenia, and depression. GABAARs are also important drug targets for anxiolytics, anticonvulsants, antidepressants, and anesthetics. Despite significant progress in understanding their three-dimensional structure, a critical gap remains in determining the molecular basis for channel gating. We recently identified mutations in the M2-M3 linkers that suggest linker flexibility has asymmetric subunit-specific correlations with channel opening. Here we use non-canonical amino acids (ncAAs) to investigate the role of main-chain H-hydrogen bonds (H-bonds) that may stabilize the M2-M3 linkers. We show that a single main-chain H-bond within the β2 subunit M2-M3 linker inhibits pore opening and is required to keep the unliganded channel closed. Furthermore, breaking this H-bond accounts for approximately one third of the energy used to open the channel during activation by GABA. In contrast, the analogous H-bond in the α1 subunit has no effect on gating. Our molecular simulations support the idea that channel opening involves the state-dependent breakage/disruption of a specific main-chain H-bond within the β2 subunit M2-M3 linker.

Suggested Citation

  • Cecilia M. Borghese & Jason D. Galpin & Samuel Eriksson Lidbrink & Yuxuan Zhuang & Netrang G. Desai & Rebecca J. Howard & Erik Lindahl & Christopher A. Ahern & Marcel P. Goldschen-Ohm, 2025. "A single main-chain hydrogen bond required to keep GABAA receptors closed," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61447-0
    DOI: 10.1038/s41467-025-61447-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61447-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61447-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas L. Kash & Andrew Jenkins & Jill C. Kelley & James R. Trudell & Neil L. Harrison, 2003. "Coupling of agonist binding to channel gating in the GABAA receptor," Nature, Nature, vol. 421(6920), pages 272-275, January.
    2. Simonas Masiulis & Rooma Desai & Tomasz Uchański & Itziar Serna Martin & Duncan Laverty & Dimple Karia & Tomas Malinauskas & Jasenko Zivanov & Els Pardon & Abhay Kotecha & Jan Steyaert & Keith W. Mill, 2019. "Author Correction: GABAA receptor signalling mechanisms revealed by structural pharmacology," Nature, Nature, vol. 566(7744), pages 8-8, February.
    3. Simonas Masiulis & Rooma Desai & Tomasz Uchański & Itziar Serna Martin & Duncan Laverty & Dimple Karia & Tomas Malinauskas & Jasenko Zivanov & Els Pardon & Abhay Kotecha & Jan Steyaert & Keith W. Mill, 2019. "GABAA receptor signalling mechanisms revealed by structural pharmacology," Nature, Nature, vol. 565(7740), pages 454-459, January.
    4. Weronika Chojnacka & Jinfeng Teng & Jeong Joo Kim & Anders A. Jensen & Ryan E. Hibbs, 2024. "Structural insights into GABAA receptor potentiation by Quaalude," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Chang Sun & Hongtao Zhu & Sarah Clark & Eric Gouaux, 2023. "Cryo-EM structures reveal native GABAA receptor assemblies and pharmacology," Nature, Nature, vol. 622(7981), pages 195-201, October.
    6. Shaotong Zhu & Colleen M. Noviello & Jinfeng Teng & Richard M. Walsh & Jeong Joo Kim & Ryan E. Hibbs, 2018. "Structure of a human synaptic GABAA receptor," Nature, Nature, vol. 559(7712), pages 67-72, July.
    7. Andrija Sente & Rooma Desai & Katerina Naydenova & Tomas Malinauskas & Youssef Jounaidi & Jonas Miehling & Xiaojuan Zhou & Simonas Masiulis & Steven W. Hardwick & Dimitri Y. Chirgadze & Keith W. Mille, 2022. "Differential assembly diversifies GABAA receptor structures and signalling," Nature, Nature, vol. 604(7904), pages 190-194, April.
    8. Shaotong Zhu & Akshay Sridhar & Jinfeng Teng & Rebecca J. Howard & Erik Lindahl & Ryan E. Hibbs, 2022. "Structural and dynamic mechanisms of GABAA receptor modulators with opposing activities," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Dagimhiwat H. Legesse & Chen Fan & Jinfeng Teng & Yuxuan Zhuang & Rebecca J. Howard & Colleen M. Noviello & Erik Lindahl & Ryan E. Hibbs, 2023. "Structural insights into opposing actions of neurosteroids on GABAA receptors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Lilia Leisle & Kin Lam & Sepehr Dehghani-Ghahnaviyeh & Eva Fortea & Jason D. Galpin & Christopher A. Ahern & Emad Tajkhorshid & Alessio Accardi, 2022. "Backbone amides are determinants of Cl− selectivity in CLC ion channels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Jeong Joo Kim & Anant Gharpure & Jinfeng Teng & Yuxuan Zhuang & Rebecca J. Howard & Shaotong Zhu & Colleen M. Noviello & Richard M. Walsh & Erik Lindahl & Ryan E. Hibbs, 2020. "Shared structural mechanisms of general anaesthetics and benzodiazepines," Nature, Nature, vol. 585(7824), pages 303-308, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weronika Chojnacka & Jinfeng Teng & Jeong Joo Kim & Anders A. Jensen & Ryan E. Hibbs, 2024. "Structural insights into GABAA receptor potentiation by Quaalude," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Dagimhiwat H. Legesse & Chen Fan & Jinfeng Teng & Yuxuan Zhuang & Rebecca J. Howard & Colleen M. Noviello & Erik Lindahl & Ryan E. Hibbs, 2023. "Structural insights into opposing actions of neurosteroids on GABAA receptors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Shaotong Zhu & Akshay Sridhar & Jinfeng Teng & Rebecca J. Howard & Erik Lindahl & Ryan E. Hibbs, 2022. "Structural and dynamic mechanisms of GABAA receptor modulators with opposing activities," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Arvind Kumar & Kayla Kindig & Shanlin Rao & Afroditi-Maria Zaki & Sandip Basak & Mark S. P. Sansom & Philip C. Biggin & Sudha Chakrapani, 2022. "Structural basis for cannabinoid-induced potentiation of alpha1-glycine receptors in lipid nanodiscs," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Vikram Dalal & Mark J. Arcario & John T. Petroff & Brandon K. Tan & Noah M. Dietzen & Michael J. Rau & James A. J. Fitzpatrick & Grace Brannigan & Wayland W. L. Cheng, 2024. "Lipid nanodisc scaffold and size alter the structure of a pentameric ligand-gated ion channel," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Marie S. Prevost & Nathalie Barilone & Gabrielle Dejean de la Bâtie & Stéphanie Pons & Gabriel Ayme & Patrick England & Marc Gielen & François Bontems & Gérard Pehau-Arnaudet & Uwe Maskos & Pierre , 2023. "An original potentiating mechanism revealed by the cryo-EM structures of the human α7 nicotinic receptor in complex with nanobodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Chen Fan & John Cowgill & Rebecca J. Howard & Erik Lindahl, 2024. "Divergent mechanisms of steroid inhibition in the human ρ1 GABAA receptor," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Nathan L. Absalom & Vivian W. Y. Liao & Katrine M. H. Johannesen & Elena Gardella & Julia Jacobs & Gaetan Lesca & Zeynep Gokce-Samar & Alexis Arzimanoglou & Shimriet Zeidler & Pasquale Striano & Pierr, 2022. "Gain-of-function and loss-of-function GABRB3 variants lead to distinct clinical phenotypes in patients with developmental and epileptic encephalopathies," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Sophie Shi & Solène N. Lefebvre & Laurie Peverini & Adrien H. Cerdan & Paula Milán Rodríguez & Marc Gielen & Jean-Pierre Changeux & Marco Cecchini & Pierre-Jean Corringer, 2023. "Illumination of a progressive allosteric mechanism mediating the glycine receptor activation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Heng Liu & Dapeng Sun & Alexander Myasnikov & Marjorie Damian & Jean-Louis Baneres & Ji Sun & Cheng Zhang, 2021. "Structural basis of human ghrelin receptor signaling by ghrelin and the synthetic agonist ibutamoren," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    11. Nikhil Bharambe & Zhuowen Li & David Seiferth & Asha Manikkoth Balakrishna & Philip C. Biggin & Sandip Basak, 2024. "Cryo-EM structures of prokaryotic ligand-gated ion channel GLIC provide insights into gating in a lipid environment," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Umang Goswami & Md Mahfuzur Rahman & Jinfeng Teng & Ryan E. Hibbs, 2023. "Structural interplay of anesthetics and paralytics on muscle nicotinic receptors," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Xuhang Lu & Dongmei Li & Yaojie Wang & Gaohua Zhang & Tianlei Wen & Yue Lu & Nan Jia & Xuedi Wang & Shenghai Chang & Xing Zhang & Jianping Lin & Yu-hang Chen & Xue Yang & Yuequan Shen, 2025. "Structural insights into the activation mechanism of the human zinc-activated channel," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    14. John T. Petroff & Noah M. Dietzen & Ezry Santiago-McRae & Brett Deng & Maya S. Washington & Lawrence J. Chen & K. Trent Moreland & Zengqin Deng & Michael Rau & James A. J. Fitzpatrick & Peng Yuan & Th, 2022. "Open-channel structure of a pentameric ligand-gated ion channel reveals a mechanism of leaflet-specific phospholipid modulation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Yeongmok Lee & Elsa Demes-Causse & Jaemin Yoo & Seo Young Jang & Seoyeon Jung & Justyna Jaślan & Geum-Sook Hwang & Jejoong Yoo & Alexis Angeli & Sangho Lee, 2025. "Structural basis for malate-driven, pore lipid-regulated activation of the Arabidopsis vacuolar anion channel ALMT9," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    16. Emma Rie Olander & Dieter Janzen & Carmen Villmann & Anders A Jensen, 2020. "Comparison of biophysical properties of α1β2 and α3β2 GABAA receptors in whole-cell patch-clamp electrophysiological recordings," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-13, June.
    17. Mackenzie J. Thompson & Farid Mansoub Bekarkhanechi & Anna Ananchenko & Hugues Nury & John E. Baenziger, 2024. "A release of local subunit conformational heterogeneity underlies gating in a muscle nicotinic acetylcholine receptor," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Xiaofen Liu & Malgorzata Krezel & Weiwei Wang, 2025. "Mechanism of human α3β GlyR regulation by intracellular M3/M4 loop phosphorylation and 2,6-di-tert-butylphenol interaction," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    19. repec:plo:pcbi00:1001046 is not listed on IDEAS
    20. repec:plo:pcbi00:0020134 is not listed on IDEAS
    21. Yingfeng Tao & Xiaoliu Zhou & Leqiang Sun & Da Lin & Huaiyuan Cai & Xi Chen & Wei Zhou & Bing Yang & Zhe Hu & Jing Yu & Jing Zhang & Xiaoqing Yang & Fang Yang & Bang Shen & Wenbao Qi & Zhenfang Fu & J, 2023. "Highly efficient and robust π-FISH rainbow for multiplexed in situ detection of diverse biomolecules," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61447-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.